【题目】如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4),则PDCD的最大值是( ).
A.2B.3C.4D.6
【答案】A
【解析】
过点O向BC作垂线OH,垂足为H,由垂径定理得到H为PD的中点,设PC=x,根据CD=PC-PD,进而求出PD·CD,整理后得到关于x的二次函数,利用二次函数的性质即可求出所求式子的最大值及此时x的取值.
过点O向BC作垂线OH,垂足为H,
∵PD是⊙O的弦,OH⊥PD,
∴PH=HD.
∵∠CHO=∠HCA=∠OAC=90°,
∴四边形OACH为矩形,
∴CH=OA=2,
∵PC=x,
∴PH=HD=PC-CH=x-2,
∴CD=PC-PD=x-2(x-2)=4-x,
∴PD·CD=2 (x-2)(4-x)=-2x2+12x-16=-2(x-3)2+2,
∵2<x<4,
∴当x=3时,PD·CD的值最大,最大值是2,
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)如果⊙O的半径为5,cos∠DAB=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x(x≥0)与双曲线y= (x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A′PB′.过点A′作A′C∥y轴交双曲线于点C,连接CP.
(1)求k1与k2的值;
(2)求直线PC的解析式;
(3)直接写出线段AB扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】5月初,为了解我校九年级男生米跑的水平,制定合理的体育训练计划,从全年级随机抽取部分男生进行测试,并把测试成绩分为四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)a= _,b= _;
(2)扇形统计图中表示等次的扇形所对的圆心角的度数为 度;
(3)学校决定从等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y1=x﹣5与双曲线y2=﹣.
(1)求证:无论p取何值时,两个函数的图象恒有两个交点;
(2)设两个交点分别为A(x1,y1)、B(x2,y2),且满足x12+x22=3x1x2,求实数p的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x+4的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且BOC的面积为2.则k=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:如图,与都是等腰直角三角形,且点在边上,,的中点均为,连接,,,显然,点,,在同一条直线上,可以证明,所以
解决问题:
(1) 将图中的绕点旋转到图的位置, 猜想此时线段与的数量关系,并证明你的结论.
(2) 如图,若与都是等边三角形,,的中点均为,上述中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出与之间的数量关系.
(3) 如图, 若与都是等腰三角形,,的中点均为,且顶角,与之间的数量关系如何(用含的式子表示出来)?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com