【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
【答案】
(1)解:如图1中,
∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD= ∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三 角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线
(2)解:①当AD=CD时,如图2,
∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.
②当AD=AC时,如图3中,∠ACD=∠ADC=(180°-48°)÷2=66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.
③当AC=CD时,如图4中,
∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃,∴∠ACB=96°或114°
(3)解:由已知AC=AD=2,∵△BCD∽△BAC,∴ 设BD=x,∴ ),∵x>0,∴x= ,∵△BCD∽△BAC,∴ = ,∴CD= ×2= .
【解析】(1)根据三角形内角和定理和角平分线性质,得到△ABC不是等腰三角形,△ACD为等腰三角形,△BCD∽△BAC,得到CD是△ABC的完美分割线;(2)由CD是△ABC的完美分割线,∠A=48°,AD=CD,根据等腰三角形的性质,求出∠ACB的度数.
【考点精析】解答此题的关键在于理解相似三角形的应用的相关知识,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.
科目:初中数学 来源: 题型:
【题目】两个多位正整数,若它们各数位上的数字之和相等,则称这两个多位数互为“调和数”.例如:49与76,因为4+9=7+6=13,所以49与76互为“调和数”;又如:225与18,因为2+2+5=1+8=9,所以225与18互为“调和数”.
(1)362与________互为“调和数”(写出一个即可);
(2)若两位数与75是一对“调和数”,且的十位数字是个位数字的2倍,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△A1B1C1、△A2B2C2、△A3B3C3、…、△AnBnn均为等腰直角三角形,且∠C1=∠C2=∠C3=…=∠n=90°,点A1、A2、A3、…、An和点B1、B2、B3、…、Bn分别在正比例函数y=x和y=﹣x的图象上,且点A1、A2、A3、…、An的横坐标分别为1,2,3…n,线段A1B1、A2B2、A3B3、…、AnBn均与y轴平行.按照图中所反映的规律,则△AnBnn的顶点n的坐标是_____;线段C2018C2019的长是_____.(其中n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折, 使点A落在BC边上的点F处,则CE的最大值为( )
A.
B.
C.4
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com