【题目】如图,在平面直角坐标系中,△A1B1C1、△A2B2C2、△A3B3C3、…、△AnBnn均为等腰直角三角形,且∠C1=∠C2=∠C3=…=∠n=90°,点A1、A2、A3、…、An和点B1、B2、B3、…、Bn分别在正比例函数y=x和y=﹣x的图象上,且点A1、A2、A3、…、An的横坐标分别为1,2,3…n,线段A1B1、A2B2、A3B3、…、AnBn均与y轴平行.按照图中所反映的规律,则△AnBnn的顶点n的坐标是_____;线段C2018C2019的长是_____.(其中n为正整数)
【答案】
【解析】
先求出A1(1,),B1(1,﹣1),得出A1B1=﹣(﹣1)=,根据等腰直角三角形的性质求出C1的坐标,再分别求出C2、C3、C4的坐标,得出规律,进而求出n的坐标;分别计算线段C1C2、C2C3、C3C4的长度,从而得出线段C2018C2019的长.
∵x=1时,y=x=,y=﹣x=﹣1,
∴A1(1,),B1(1,﹣1),
∴A1B1=﹣(﹣1)=,
∵△A1B1C1为等腰直角三角形,
∴C1的横坐标是1+A1B1=,C1的纵坐标是﹣1+A1B1=﹣,
∴C1的坐标是(,﹣);
∵x=2时,y=x=1,y=﹣x=﹣2,
∴A2(2,1),B2(2,﹣2),
∴A2B2=1﹣(﹣2)=3,
∵△A1B1C1为等腰直角三角形,
∴C2的横坐标是2+A2B2=,C2的纵坐标是﹣2+A1B1=﹣,
∴C2的坐标是(,﹣);
同理,可得C3的坐标是(,﹣);C4的坐标是(7,﹣1);
…
∴△AnBnn的顶点n的坐标是(,﹣);
∵C1C2=,
C2C3=,
C3C4=,
…
∴C2018C2019=.
故答案为(,﹣);.
科目:初中数学 来源: 题型:
【题目】小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.
(1)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是 ;
(2)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.
(3)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:
学生/成绩/次数 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 |
甲 | 169 | 165 | 168 | 169 | 172 | 173 | 169 | 167 |
乙 | 161 | 174 | 172 | 162 | 163 | 172 | 172 | 176 |
两名同学的8次跳高成绩数据分析如下表:
学生/成绩/名称 | 平均数(单位:cm) | 中位数(单位:cm) | 众数(单位:cm) | 方差(单位:cm2) |
甲 | a | b | c | 5.75 |
乙 | 169 | 172 | 172 | 31.25 |
根据图表信息回答下列问题:
(1)a= ,b= ,c= ;
(2)这两名同学中, 的成绩更为稳定;(填甲或乙)
(3)若预测跳高165就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,理由是: ;
(4)若预测跳高170方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,班由是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
A.4
B.
C.6
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的网格中,点A,点C均落在格点上,点B为中点.
(Ⅰ)计算AB的长等于;
(Ⅱ)若点P,Q分别为线段BC,AC上的动点,且BP=CQ,请在如图所示的网格中,用无刻度的直尺,画出当PQ最短时,点P,Q的位置,并简要说明画图方法(不要求证明) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论: ①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;
③a﹣b+c≥0;
④ 的最小值为3.
其中,正确结论的个数为( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com