精英家教网 > 初中数学 > 题目详情

【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )

A.4
B.
C.6
D.

【答案】B
【解析】连接OD,

∵DF是切线,∴∠ODF=90°,

∵∠C=60°,OD=OC= BC,

∴△OCD是等边三角形,

∴CD=OC= BC= AC,

∴OD//AB,∴∠AFD=∠ODF=90°,

∵∠A=60°,

∴∠ADF=30°,

∴AD=2AF=4,

∴AC=8,

∴AB=AC=8,

∵AF=2,

∴BF=6,

∵∠FBG=90°,∠B=60°,

∴FG=FB·sin60°=3

所以答案是:B.


【考点精析】掌握含30度角的直角三角形和切线的性质定理是解答本题的根本,需要知道在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(10分)如图所示,某公路一侧有AB两个送奶站,C为公路上一供奶站,CACB为供奶路线,现已测得AC=8kmBC=15kmAB=17km1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取 ,计算结果保留一位小数)

(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBC,∠ABD=30°,ABADDCBC于点C,若BD=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A1B1C1A2B2C2A3B3C3AnBnn均为等腰直角三角形,且∠C1=∠C2=∠C3=∠n90°,点A1A2A3An和点B1B2B3Bn分别在正比例函数yxy=﹣x的图象上,且点A1A2A3An的横坐标分别为123…n,线段A1B1A2B2A3B3AnBn均与y轴平行.按照图中所反映的规律,则AnBnn的顶点n的坐标是_____;线段C2018C2019的长是_____.(其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,分别根据下列条件,写出各点的坐标.

1)若点轴上,位于原点上方,距离原点2个单位长度,则点__________

2)若点轴上,位于原点右侧,距离原点1个单位长度,则点__________

3)若点轴上方,轴右侧,距离每条坐标轴都是2个单位长度,则点__________

4)若点轴上,位于原点右侧,距离原点3个单位长度,则点_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折, 使点A落在BC边上的点F处,则CE的最大值为( )

A.
B.
C.4
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,量角器的直径与直角三角板ABC的斜边及直角三角板ABD的直角边重合于AB,其中量角器0刻度线的端点与点A重合,点P从A处出发沿AD方向以每秒 cm的速度移动,CP与量角器的半圆弧交于点E,已知AB=10cm,第5秒时,点E 在量角器上对应的读数是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】襄阳市精准扶贫工作已进入攻坚阶段. 贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的过程中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.

1)第二天卖出________千克,第三天卖出________千克,第四天卖出_______千克,……,第x天卖出___________(用含x的多项式表示)千克;

2)若第26天的售价为28/千克,并且种植与销售蓝莓的成本是18/千克,求张大爷第26天当天的利润是多少元?

查看答案和解析>>

同步练习册答案