精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论:

①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2S23.

其中结论正确的序号是__________.

【答案】①②③

【解析】

①根据相似三角形面积的比等于相似比的平方判断;

②根据SAS即可求得全等;

③根据面积公式即可判断.

S1:S2=AC2:BC2正确,

∵△ADCBCE是等边三角形,

∴△ADC∽△BCE,

S1:S2=AC2:BC2

②△BCD≌△ECA正确,

∵△ADCBCE是等边三角形,

∴∠ACD=BCE=60°

∴∠ACD+ACB=BCE+ACD,

即∠ACE=DCB,

ACEDCB中,

∴△BCD≌△ECA(SAS).

③若ACBC,则S1S2=S32正确,

设等边三角形ADC的边长=a,等边三角形BCE边长=b,则ADC的高=a,BCE的高=b,

S1=aa=a2,S2=bb=b2

S1S2=a2b2=a2b2

S3=ab,

S32=a2b2

S1S2=S32

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣45),(﹣13).

1)请在如图所示的网格平面内作出平面直角坐标系;

2)请作出ABC关于y轴对称的A1B1C1

3)写出点B1的坐标;

4)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=60° ADC=ABC=90°,在ABAD上分别找一点FE,连接CEEFCF,当△CEF的周长最小时,则∠ECF的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:在中,三边的长分别为,求的面积.

小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.

参考小明解决问题的方法,完成下列问题:

)图是一个的正方形网格(每个小正方形的边长为) .

①利用构图法在答卷的图中画出三边长分别为的格点

②计算①中的面积为__________.(直接写出答案)

)如图,已知,以为边向外作正方形,连接

①判断面积之间的关系,并说明理由.

②若直接写出六边形的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形, GBC上任意一点,DE⊥AG于点EBF⊥AG于点F.

(1) 求证:DEBF = EF

(2) 当点GBC边中点时, 试探究线段EFGF之间的数量关系, 并说明理由.

(3) 若点GCB延长线上一点,其余条件不变.请画出图形,写出此时DEBFEF之间的数量关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个命题:

(1)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;

(2)若A(a,m)、B(a-1,n)(a>0)在反比例函数y=

的图象上,则m<n;

(3)一次函数y=-2x-3的图象不经过第三象限;

(4)二次函数y=-2x2-8x+1的最大值是9.

正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD为平行四边形延长AD到E使DE=AD连接EBECDB添加一个条件不能使四边形DBCE成为矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与ABDC交于点E和点F

1)证明:ADF≌△ABE

2)若AD=12DC=18,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB6BC8,点EBC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____

查看答案和解析>>

同步练习册答案