精英家教网 > 初中数学 > 题目详情
1.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,求图中阴影部分的面积.

分析 由题意表示出AB,AD,CG、FG,进而表示出BG,阴影部分面积=正方形ABCD+正方形ECGF面积-三角形ABD面积-三角形FBG面积,求出即可.

解答 解:由题意得:AB=AD=a,CG=FG=b,BG=BC+CG=a+b,
∴S阴影=S正方形ABCD+S正方形ECGF-S直角△ABD-S直角△FBG
=AB•AD+CG•FG-$\frac{1}{2}$AB•AD-$\frac{1}{2}$BG•FG
=a2+b2-$\frac{1}{2}$a2-$\frac{1}{2}$(a+b)b
=$\frac{1}{2}$(a2+b2-ab)
=$\frac{1}{2}$[(a+b)2-3ab],
∵a+b=18,ab=60,
∴S阴影=$\frac{1}{2}$×(182-3×60)=72.

点评 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O的半径是(  )
A.2.5B.2C.2.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中,已知点A(2,3),点B(6,1)关于y轴对称的点分别是点C,点D.
(1)请写出点C,点D的坐标;
(2)在x轴上求作一点P,使PA+PB的值最小(保留作图痕迹,不要求写作法)并直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列实数中属于无理数的是(  )
A.$\frac{23}{3}$B.$\sqrt{1}$C.1.101001D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.因式分解:
(1)2am-8am2
(2)25a2-b2
(3)ax2-4ax+4a
(4)(a+b)2-2(a+b)c+c2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.三角形三边长分别为8,17,15,则最短边上的高为(  )
A.8B.15C.16D.17

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:
①x2-8x+12=0
②3x(x-1)=2-2x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(4,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C,动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动.P,Q两点同时出发,P的速度是2个单位/秒,Q的速度是1个单位/秒.当一点到达终点时另一点也随之停止运动.
(1)求线段BC的长:
(2)如图2,连接PQ交线段OB于点E,过点E作x轴的平行线交BC于点F,设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量的取值范围;
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′.使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G.当QE′+GE′=3时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.把抛物线y=-2x2+4x+1沿坐标轴先向左平移3个单位,再向上平移4个单位,那么所得的抛物线有没有最大值?若有,求出该最大值;若没有,说明理由.

查看答案和解析>>

同步练习册答案