【题目】如图,点E为□ABCD中一点,EA=ED,∠AED=90,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.
![]()
(1)若AH=6,FH=2,求AE的长;
(2)求证:∠P=45;
(3)若DG=2PG,求证:∠AGE=∠EDG.
【答案】(1)
;(2)见详解;(3)见详解
【解析】
(1)在Rt△ADH中,设AD=DF=x,则DH=x-2,由勾股定理,求出AD的长度,由等腰直角三角形的性质,即可求出AE的长度;
(2)根据题意,设∠ADF=2a,则求出∠FAH=
,然后∠ADG=∠AGD=
,再根据三角形的外角性质,即可得到答案;
(3)过点A作AM⊥DP于点M,连接EM,EF,根据等腰直角三角形的判定和性质,全等三角形的判定和性质,得到角之间的关系,从而通过等量互换,即可得到结论成立.
解:(1)∵AG⊥DF于点H,
∴∠AHD=90°,
∵AH=6,FH=2,
在Rt△ADH中,设AD=DF=x,则DH=DF
FH=x-2,
由勾股定理,得:
,
∴
,
∴
,
即AD=DF=AG=10,
∵EA=ED,∠AED=90,
∴△ADE是等腰直角三角形,
∴AE=DE=
;
(2)如图:
![]()
∵∠AED=90,AG⊥DF,
∴∠EAH=∠EDH,
设∠ADF=2a,
∵DA=DF,
则∠AFH=∠DAF=
,
∴∠FAH=
,
∴∠DAH=
,
∵AD=AG,
∴∠ADG=∠AGD=
,
∴
;
(3)过点A作AM⊥DP于点M,连接EM,EF,如图:
![]()
∵AD=AG,DG=2PG,
∴PG=GM=DM,
∵∠P=45°,
∴△APM是等腰直角三角形,
∴AM=PM=DG,
∵∠ANO=∠DNM,∠AED=∠AMD=90°,
∴∠OAM=∠ODG,
∵AE=DE,AM=DG,
∴△AEM≌△DEG,
∴EM=EG,∠AEM=∠DEG,
∴∠AED+∠DEM=∠DEM+∠MEG,
∴∠MEG=∠AED=90°,
∴△MEG是等腰直角三角形;
∴∠EMG=45°,
∴∠AME=∠EMG=45°,
∴ME是∠AMP的角平分线,
∵AM=PM,
∴ME⊥AP,
∵∠AOH=∠DOE,
∴∠OAH=∠ODE,
∴△AEG≌△DEF(SAS),
∴∠AEG=∠DEF,
∴∠AED+∠AEF=∠AEF+∠FEG,
∴∠FEG=∠AED=90°,
∴∠FEG+∠MEG=180°,
即点F、E、M,三点共线,
∴MF⊥AP,
∵AM平分∠DAG,
∴∠GAM=∠DAM,
∵∠EAN+∠DAM=45°,
∴∠EAN+∠GAM=45°,
∵∠PAG+∠GAM=45°,
∴∠EAN=∠PAG,
∵∠PAG+∠AFH=∠DFE+∠AFH=90°,
∴∠EAN=∠PAG=∠DFE,
∵△AEG≌△DEF,
∴∠AGE=∠DFE=∠EAN,
∵∠EAN=∠EDM,
∴∠AGE=∠EDM,
∴∠AGE=∠EDG.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD的边AD的延长线上截取DE=AD,F是AE延长线上的一点,连结BD、CE、BF分别交CE、CD于G、H.
![]()
求证:(1)△ABD≌△DCE;
(2)CE∶CG=DF∶AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:探究函数y=x+
的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
x | … | ﹣3 | ﹣2 | ﹣ | ﹣1 |
|
| 1 |
| 2 | 3 | … |
y | … | ﹣3 | ﹣3 |
| ﹣3 | ﹣4 | 4 |
| 3 | … |
(3)如图,在平面直角坐标系中描点并画出此函数的图象;
![]()
(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知
,
、
、
的对边分别是
、
、
,一条直线
与边
相交于点
,与边
相交于点
.
(1)如图①,若
将
分成周长相等的两部分,求
的值;(用
、
、
表示)
(2)如图②,若
,
,
,
将
分成周长、面积相等的两部分,求
的值;
(3)如图③,若
将
分成周长、面积相等的两部分,且
,则
、
、
满足什么关系?
![]()
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.
![]()
(1)证明:DE//AB;
(2)若CD=3,求四边形BEDF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线
与
轴交于点
与
轴交于点
,
,且
点的坐标为
.
(1)求该抛物线的解析式.
(2)如图1,若点
是线段
上的一动点,过点
作
,交
于
,连接
,求
面积的最大值.
![]()
(3)如图2,若直线
与线段
交于点
,与线段
交于点
,是否存在
,
,使得
为直角三角形,若存在,请求出
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣
x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒
(1)求抛物线的解析式;
(2)当BQ=
AP时,求t的值;
(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东
方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处
海里的D处,此时救援艇在C处测得D处在南偏东
的方向上.
![]()
求C、D两点的距离;
捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求
的正弦值.
参考数据:
,
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com