精英家教网 > 初中数学 > 题目详情

【题目】已知,抛物线轴交于点轴交于点,且点的坐标为

1)求该抛物线的解析式.

2)如图1,若点是线段上的一动点,过点,交,连接,求面积的最大值.

3)如图2,若直线与线段交于点,与线段交于点,是否存在,使得为直角三角形,若存在,请求出的值;若不存在,请说明理由.

【答案】1;(23;(3)存在,

【解析】

1)利用待定系数法求出未知系数即可;

2)求出AB坐标,设出点P坐标,利用相似三角形的性质表示的面积,通过讨论最值,求出最大面积.

3)用m分别表示出MN坐标,分别讨论OMN为直角三角形顶点时的情况,求出相应的m.

解:(1)把点分别代入中,

,解得∴该函数解析式为

2)令,即,解得

,则

,即

化简得:

∴当时,的最大值为3

3)由题可得:

联立,解得,∴

联立,解得,∴

①当时,即

又∵,∴

②当时,即

,∴

③当时,即

,无解

∴综上所述:∴,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)

1)等奖所占的百分比是________;三等奖的人数是________人;

2)据统计,在获得一等奖的学生中,男生与女生的人数比为,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;

3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点EF,设BF=CE=关于的函数图象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EABCD中一点,EA=ED,∠AED=90,点FG分别为ABBC上的点,连接DF,AGAD=AG=DF,且AGDF于点H,连接EGDG,延长AB,DG相交于点P

1)若AH=6FH=2,求AE的长;

2)求证:∠P=45

3)若DG=2PG,求证:∠AGE=EDG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B颜色、C颜色的产品在成本的基础上分别加价40%50%60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OCOD10分米,展开角∠COD60°,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米.当∠AOC90°时,点A离地面的距离AM_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则BE′﹣BE_________分米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,小正方形格子的边长为1RtABC三个顶点都在格点上,请解答下列问题:

(1)写出AC两点的坐标;

(2)画出△ABC关于原点O的中心对称图形△A1B1C1

(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.

(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;

(2)请你估计该校约有 名学生喜爱打篮球;

(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y2x的图象与反比例函数y的图象交于点(a2).

1)求ak的值.

2)若点Pmn)在反比例函数图象上,且点Py轴的距离小于1,请根据图象直接写出n的取值范围.

查看答案和解析>>

同步练习册答案