【题目】如图,在四边形AOBC中,AC∥OB,顶点O是原点,顶点A的坐标为(0,8),AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设P(Q)点运动的时间为ts.
(1)求直线BC的函数解析式;
(2)当t为何值时,四边形AOQP是矩形?
【答案】(1) y=﹣4x+104; (2) 当t为6.5s时,四边形AOQP是矩形
【解析】
(1)首先根据顶点A的坐标为(0,8),AC=24cm,OB=26cm,分别求出点B、C的坐标各是多少;然后应用待定系数法,求出直线BC的函数解析式即可.
(2)根据四边形AOQP是矩形,可得AP=OQ,据此求出t的值是多少即可.
(1)如图1,
∵顶点A的坐标为(0,8),AC=24 cm,OB=26 cm,
∴B(26,0),C(24,8),
设直线BC的函数解析式是y=kx+b,
则,
解得,
∴直线BC的函数解析式是y=﹣4x+104.
(2)如图2,
根据题意得:AP=t cm,BQ=3t cm,则OQ=OB﹣BQ=(26﹣3t)cm,
∵四边形AOQP是矩形,
∴AP=OQ,
∴t=26﹣3t,
解得t=6.5,
∴当t为6.5s时,四边形AOQP是矩形.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH上的一点,且DH=HC,连结BD并延长BD交AC于点E,连结EH.
(1)请补全图形;
(2)直接写出BD与AC的数量关系和位置关系;
(3)求证:∠BEH=45°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,、均在的中垂线上,且、到大楼的距离分别为米和米,又已知长米,长米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问:
(1)P、Q两点从开始出发多长时间时,四边形PBCQ的面积是33?
(2)P、Q两点从开始出发多长时间时,点P与Q之间的距离是10cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在轴和轴上,其中OA=6,OC=3.已知反比例函数(x>0)的图象经过BC边上的中点D,交AB于点E.
(1)k的值为 ;
(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图中的正方形网格中是格点三角形,小正方形网格的边长为(单位长度).
的面积是________(平方单位);
在图所示的正方形网格中作出格点和″″″,使,″″″,且、、″″中任意两条线段的长度都不相等;
在所有与相似的格点三角形中,是否存在面积为(平方单位)的格点三角形?如果存在,请在图中作出,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com