精英家教网 > 初中数学 > 题目详情

【题目】方法感悟:

1)如图①,在矩形ABCD中,AB=4AD=6AE=4AF=2,是否在边BCCD上分别存在点GH,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.

问题解决:

2)如图②,有一矩形板材ABCDAB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°EF=FG=米,∠EHG=45°,经研究,只有当点EFG分别在边ADABBC上,且AFBF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积,并写出在以B为坐标原点,直线BCx轴,直线BAy轴的坐标系中,点H的坐标;若不能,请说明理由.

【答案】1)存在得四边形EFGH的周长最小,最小值为2+10

2)当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+m2H(+3,1)

【解析】分析: (1)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;

(2)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点H在⊙O上,连接FO,并延长交⊙OH′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.

详解:

解:(1)存在,理由:作E关于CD的对称点E′

F关于BC的对称点F′

连接E′F′,交BCG,交CDH,连接FGEH

F′G=FGE′H=EH,则此时四边形EFGH的周长最小,

由题意得:BF′=BF=AF=2DE′=DE=2A=90°

AF′=6AE′=8

E′F′=10EF=2

∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10

∴在边BCCD上分别存在点GH

使得四边形EFGH的周长最小,最小值为2+10

2)能裁得,

理由:∵EF=FG=A=B=90°1+AFE=2+AFE=90°

∴∠1=2

AEFBGF中,

∴△AEF≌△BGF

AF=BGAE=BF

AF=x,则AE=BF=3﹣x

x2+3x2=2

解得:x=1x=2(不合题意,舍去),

AF=BG=1BF=AE=2

DE=4CG=5

连接EG,作EFG关于EG的对称EOG

则四边形EFGO是正方形,∠EOG=90°

O为圆心,以EG为半径作⊙O

则∠EHG=45°的点在⊙O上,

连接FO,并延长交⊙OH′,则H′EG的垂直平分线上,

连接EH′GH′,则∠EH′G=45°

此时,四边形EFGH′是要想裁得符合要求的面积最大的,

C在线段EG的垂直平分线设,

∴点FOH′C在一条直线上,

EG=

OF=EG=

CF=2

OC=

OH′=OE=FG=

OH′OC

∴点H′在矩形ABCD的内部,

∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,

这个部件的面积=EGFH′=××+=5+

∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+m2H(+3,1).

点睛: 本题考查了全等三角形的判定和性质,矩形的性质,勾股定理,轴对称的性质,存在性问题,掌握的作出辅助线利用对称的性质解决问题是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20

1)求这批校服共有多少件?

2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中, , AC=BC=3, ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.

【答案】

【解析】分析:过点DDGAB于点G.根据折叠性质,可得AE=DE=2AF=DFCE=1

RtDCE中,由勾股定理求得所以DB=RtABC中,由勾股定理得RtDGB中,由锐角三角函数求得

AF=DF=xFG= RtDFG中,根据勾股定理得方程=解得,从而求得.的值

详解:

如图所示,过点DDGAB于点G.

根据折叠性质,可知AEFDEF

∴AE=DE=2AF=DFCE=AC-AE=1

RtDCE中,由勾股定理得

DB=

RtABC中,由勾股定理得

RtDGB中,

AF=DF=xFG=AB-AF-GB=

RtDFG

=

解得

==.

故答案为: .

点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.

型】填空
束】
18

【题目】规定:[x]表示不大于x 的最整数,(x) 表示不小于x的最小整数,[x) 表示最接近x的整数(xn+0.5n为整数),例如:[2.3]=2(2.3)=3[2.3)=2,则下列说法正确的是__________(写出所有正确说法).

①当x=1.7时,[x]+(x)+[x)=6

②当x=-2.1时,[x]+(x)+[x)=-7

③方程4[x]+3(x)+[x)=11的解为1<x<1.5

④当-1<x<1, 函数y=[x]+(x)+x 的图像y=4x 的图像有两个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3张纸牌,分別是红桃3、红桃4和黑桃5(简称红3,红4,黑5).把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.

1)两次抽得纸牌均为红桃的概率;(请用画树状图列表等方法写出分析过程)

2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得花色相同则甲胜,否则乙胜.B方案:若两次抽得纸牌的数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,∠A=90°

1)请用圆规和直尺作出⊙P,使圆心PAC边上,且与ABBC两边都相切(保留作图痕迹,不写作法和证明);

2)在(1)的条件下,若∠B=45°AB=1PBC于点D,求劣弧的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为选拔一名选手参加美丽江门,我为侨乡做代言主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:

服装

普通话

主题

演讲技巧

李明

85

70

80

85

张华

90

75

75

80

结合以上信息,回答下列问题:

1)求服装项目在选手考评中的权数;

2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加美丽江门,我为侨乡做代言主题演讲比赛,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,已知EBC的中点,连接AE并延长交DC的延长线于点F,连接BF

1)求证:AB=CF

2)当BCAF满足什么数量关系时,四边形ABFC是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(a ,2)是直线y=x上一点,以A为圆心,2为半径作⊙A,若P(x,y)是第一象限内⊙A上任意一点,则的最小值为(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是由若干个完全相同的小正方体组成的一个几何体。

1)图中有   块小正方体;

2)请画出这个几何体的左视图和俯视图;(用阴影表示)

3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?

查看答案和解析>>

同步练习册答案