【题目】某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:
销售第x天 | 第1天 | 第2天 | 第3天 | 第4天 | … | 第30天 |
销售单价m(元/件) | 49 | 48 | 47 | 46 | … | 20 |
日销售量n(件) | 45 | 50 | 55 | 60 | … | 190 |
(1)观察表中数据,分别直接写出m与x,n与x的函数关系式: , ;
(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?
(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?
【答案】
(1)m=﹣x+50,n=5x+40
(2)解:根据题意得:(﹣x+50)(5x+40)=3600,
整理得:x2﹣42x+320=0,
解得:x1=10,x2=32.
∵32>30,
∴x=32舍去.
答:第10天的日销售额为3600元
(3)解:设日销售额为w元,
根据题意得:w=(﹣x+50)(5x+40)=﹣5x2+210x+2000=﹣5(x﹣21)2+4205.
∵a=﹣5<0,
∴抛物线开口向下.
又∵对称轴为直线x=21,
∴当1≤x≤14时,w随x的增大而增大,
∴当x=14时,w取最大值,最大值为3960.
答:在儿童节前(不包括儿童节当天)销售该商品第14天时该商品的日销售额最多,商场可捐款3960元.
【解析】(1)观察表中数据可知:每过一天,销售单价降低1元/件、销量增加5件,
∴m=49﹣(x﹣1)=﹣x+50,n=45+5(x﹣1)=5x+40.
所以答案是:m=﹣x+50;n=5x+40.
(2)根据总利润=销量单件利润可转化为方程(﹣x+50)(5x+40)=3600;(3)最值问题需构建函数,即销售额为w=(﹣x+50)(5x+40)=﹣5x2+210x+2000=﹣5(x﹣21)2+4205,求出最大值即可.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.(写出所有可能情况)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点D,E分别是△ABC的边AB,AC的中点.
(1)如图1,点O是△ABC内的动点,点O,F分别是OB,OC的中点,求证:DEFG是平行四边形;
(2)如图2,若BE交DC于点O,请问AO的延长线经过BC的中点吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与X轴交于点A、B两点B处的坐标为(3,0),与y轴交于c(0,﹣3),点P是直线BC下方抛物线上的动点.
(1)求出二次函数的解析式;
(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,求出点P的坐标,若存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P的坐标和四边形ABPC的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.
(1)若∠BAC=40°,求∠AEB的度数;
(2)求证:∠AEB=∠ACF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com