【题目】已知正方形 的对角线 , 相交于点 .
(1)如图1, , 分别是 , 上的点, 与 的延长线相交于点 .若 ,求证: ;
(2)如图2, 是 上的点,过点 作 ,交线段 于点 ,连结 交 于点 ,交 于点 .若 ,
①求证: ;
②当 时,求 的长.
【答案】
(1)
证明:∵四边形ABCD是正方形.
∴AC⊥BD,OD=OC.
∴∠DOG=∠COE=90°.
∴∠OEC+∠OCE=90°.
∵DF⊥CE.
∴∠OEC+∠ODG=90°.
∴∠ODG=∠OCE.
∴△DOG≌△COE(ASA).
∴OE=OG.
(2)
①证明∵OD=OC,∠DOG=∠COE=90°.
又OE=OG.
∴△DOG≌△COE(SAS).
∴∠ODG=∠OCE.
②解:设CH=x,
∵四边形ABCD是正方形,AB=1
∴BH=1-x
∠DBC=∠BDC=∠ACB=45°
∵EH⊥BC
∴∠BEH=∠EBH=45°
∴EH=BH=1-x
∵∠ODG=∠OCE
∴∠BDC-∠ODG=∠ACB-∠OCE
∴∠HDC=∠ECH
∵EH⊥BC
∴∠EHC=∠HCD=90°
∴△CHE∽△DCH
∴ =.
∴HC2=EH·CD
得x2+x-1=0
解得x1=,x2= (舍去).
∴HC=.
【解析】(1)根据正方形的性质,可根据三角形全等的判定ASA和性质即可.
(2)①同(1)中,利用上面的结论,根据SAS可证的结论.
②设CH=x,然后根据正方形的性质和相似三角形的判定于性质可得=,然后列方程求解即可.
【考点精析】解答此题的关键在于理解公式法的相关知识,掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
(2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;
(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=ax+b(a≠0)经过点A(﹣3,0)和点B(0,2),那么关于x的方程ax+b=0的解是( )
A.x=﹣3
B.x=﹣1
C.x=0
D.x=2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A. 60 B. 80 C. 30 D. 40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=(x-1)2+1与y轴交于点A,过点A与点(1,3)的直线与C1交于点B
(1) 求直线AB的函数表达式
(2) 如图1,若点P为直线AB下方的C1上一点,求点P到直线AB的距离的最大值
(3) 如图2,将直线AB绕点A顺时针旋转90°后恰好经过C1的顶点C,沿射线AC的方向平移抛物线C1得到抛物线C2,C2的顶点为D,两抛物线相交于点E.设交点E的横坐标为m.若∠AED=90°,求m的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com