精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,直线ABx轴、y轴分别交于A(6,0),B(0,3)两点.点C为线段AB上的一个动点,过点CCDx轴于点D,作CEy轴与点E,求矩形OECD的最大面积,并求此时点C的坐标.

【答案】矩形面积最大,此时C(3,).

【解析】

直接利用已知求出直线AB的解析式进而得出S矩形OECDCDCE=|m||m+3|m2+3m配方即可得出答案

∵直线ABx轴、y轴分别交于A(6,0),B(0,3)两点∴设直线AB解析式为ykx+3,∴6k+3=0,解得k∴直线AB解析式为yx+3;

设点Cmm+3),其中m>0,S矩形OECDCDCE=|m||m+3|m2+3m=m﹣3)2m=3矩形面积最大此时C(3,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABDE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m,同时测量出DE在阳光下的投影长为6m.

(1)请你在图中画出此时DE在阳光下的投影;

(2)请你计算DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,按以下步骤作图:A为圆心,任意长为半径作弧,分别交ABAD于点MN分别以MN为圆心,以大于MN长为半径作弧,两弧相交于点P作射线AP交边CD于点Q,若DC=3QCBC=6,则平行四边形ABCD周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图中两幅不完整的统计,请你根据图中提供的信息解答下列问题:

(1)在这次调查中共调查了多少名学生?

(2)求7户外活动时间为0.5小时的人数,并补充频数分布直方图;

(3)求表示户外活动时间为2小时的扇形圆心角的度数;

(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工人师傅用一块长为12分米,宽为8分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求当长方体底面面积为32平方分米时,裁掉的正方形边长是多少?

(2)若要求制作的长方体的底面长不大于底面宽的5倍(长大于宽),并将容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,求裁掉的正方形边长为多少时,总费用最低,最低费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点

C03

求该函数的关系式;

求改抛物线与x轴的交点A,B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).

(1)求点B的坐标;

(2)设点M(x1,y1)、N(x2,y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点HDC上一点,BDAH交于点OABO为等边三角形,点E在线段AO上,ODOE,连接BE,点FBE的中点,连接AF并延长交BC于点G,且∠GAD60°

1)若CH2AB4,求BC的长;

2)求证:BDAB+AE

查看答案和解析>>

同步练习册答案