精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,直线y=数学公式x+数学公式与直线y=x交于点A,点B在直线y=数学公式x+数学公式上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.
(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.

解:(1)由直线y=x+与直线y=x交于点A,得

解得,
∴点A的坐标是(3,3).
∵∠BOA=90°,
∴OB⊥OA,
∴直线OB的解析式为y=-x.
又∵点B在直线y=x+上,

解得,
∴点B的坐标是(-1,1).
综上所述,点A、B的坐标分别为(3,3),(-1,1).

(2)由(1)知,点A、B的坐标分别为(3,3),(-1,1).
∵抛物线y=ax2+bx+c过点A,O,B,

解得,
∴该抛物线的解析式为y=x2-x,或y=(x-2-
∴顶点E的坐标是(,-);

(3)OD与CF平行.理由如下:
由(2)知,抛物线的对称轴是x=
∵直线y=x与抛物线的对称轴交于点C,
∴C().
设直线BC的表达式为y=kx+b(k≠0),把B(-1,1),C()代入,得

解得,
∴直线BC的解析式为y=-x+
∵直线BC与抛物线交于点B、D,
∴-x+=x2-x,
解得,x1=,x2=-1.
把x1=代入y=-x+,得y1=
∴点D的坐标是().
如图,作DN⊥x轴于点N.
则tan∠DON==
∵FE∥x轴,点E的坐标为(,-).
∴点F的纵坐标是-
把y=-代入y=x+,得x=-
∴点F的坐标是(-,-),
∴EF=+=
∵CE=+=
∴tan∠CFE==
∴∠CFE=∠DON.
又∵FE∥x轴,
∴∠CMN=∠CFE,
∴∠CMN=∠DON,
∴OD∥CF,即OD与CF平行.
分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=-x,则,通过解该方程组来求点B的坐标即可;
(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可求得该抛物线的解析式;
(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN与∠DON相等即可.
点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案