【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别 | 分数段 | 频数(人) | 频率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
请根据以图表信息,解答下列问题:
(1)表中m= ,n= ;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
【答案】(1)120,0.2;(2)详见解析;(3)全体参赛选手成绩的中位数落在80≤x<90这一组;(4)这名选手恰好是获奖者的概率是0.55.
【解析】
(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;
(2)根据(1)中的m的值,可以将补全频数分布直方图;
(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;
(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.
解:(1)由表格可得,
全体参赛的选手人数有:30÷0.1=300,
则m=300×0.4=120,n=60÷300=0.2,
故答案为120,0.2;
(2)补全的频数分布直方图如右图所示,
(3)∵35+45=75,75+60=135,135+120=255,
∴全体参赛选手成绩的中位数落在80≤x<90这一组;
(4)由题意可得,
,
即这名选手恰好是获奖者的概率是0.55.
科目:初中数学 来源: 题型:
【题目】我国北斗导航装备的不断更新,极大方便人们的出行.光明中学组织学生利用导航到“金牛山”进行研学活动,到达A地时,发现C地恰好在A地正北方向,且距离A地11.46千米.导航显示路线应沿北偏东60°方同走到B地,再沿北偏西37°方向走一段距离才能到达C地,求B,C两地的距离(精确到1千米).
(参考数据sin53°≈0.80,cos53°≈0.60,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:
类别 | 项 目 | 人数 |
A | 跳绳 | 59 |
B | 健身操 | ▲ |
C | 俯卧撑 | 31 |
D | 开合跳 | ▲ |
E | 其它 | 22 |
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0)两点,点C为抛物线与y轴的交点.
(1)求此抛物线的解析式;
(2)P是x轴上方抛物线上的一个动点,过P作PM⊥x轴,垂足为M,问:是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上找一点D,过点D作x轴的垂线,交AC于点E,是否存在这样的点D,使DE最长,若存在,求出点D的坐标,以及此时DE的长,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点A(,2),且与直线交于B、C两点,点B的坐标为(,m).
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使得∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
A. 3km B. 3km C. 4km D. (3-3)km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,,,点D为直线BC上的一动点点D不与点B、C重合,以AD为边作,使,,连接CE.
发现问题:
如图1,当点D在边BC上时,
请写出BD和CE之间的位置关系为______,并猜想BC和CE、CD之间的数量关系:______.
尝试探究:
如图2,当点D在边BC的延长线上且其他条件不变时,中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;
拓展延伸:
如图3,当点D在边CB的延长线上且其他条件不变时,若,,求线段ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c-a=0的两根为m,n(m<n),则下列判断正确的是( )
A. m<n<x1<x2 B. m<x1<x2<n C. x1+x2>m+n D. b2-4ac≥0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com