精英家教网 > 初中数学 > 题目详情

【题目】如图,在中, ,点分别是的中点, 延长线上的一点,且

(1)求证:

(2)求证:

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1根据三角形中位线定理可得DE=BC,再根据,从而可得DE=CF;

(2)利用SAS证明△BDE≌△ECF即可得.

试题解析(1)∵点分别是的中点,

∴DE‖BC,且DE=BC,

,∴DE=CF;

(2)∵AD=BD=AB,AE=EC=AC,AB=AC,

∴BD=EC, AD=AE,

∴∠ADE=∠AED,

∴∠BDE=180°-∠ADE=180°-∠AED,

∵DE‖BC,∴∠AED=∠ACB,

∴∠ECF=180°-∠ACB ,∴∠BDE=∠ECF,

又由(1)得DE=CF, ∴△BDE≌△ECF(SAS),

∴BE=EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.

小亮根据学习函数的经验,对函数的图象与性质进行了探究。

下面是小亮的探究过程,请补充完整:

(1)函数中自变量x的取值范围是_________.

(2)下表是yx的几组对应值.

x

-3

-2

-1

0

2

3

4

5

y

-

-

-4

-5

-7

m

-1

-2

-

-

m的值;

(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;

(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AC=6BC=12,点D在边BC上,点E在线段AD上,EFAC于点FEGEFAB于点G,若EF=EG,则CD的长为( )

A.3.6B.4C.4.8D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P2018次碰到长方形的边时,点P的坐标为______

【答案】

【解析】

根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.

解:如图所示:经过6次反弹后动点回到出发点

当点P2018次碰到矩形的边时为第337个循环组的第2次反弹,

P的坐标为

故答案为:

【点睛】

此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.

型】填空
束】
15

【题目】为了保护环境,某公交公司决定购买AB两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2A型车比购买3B型车少60万元.

请求出ab

若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“*”定义一种新运算:对于任意有理数ab,规定a*b=ab2+2ab+a.

如:1*3=1×32+2×1×3+1=16

(1)求2*(﹣2)的值;

(2)若2*x=m,(其中x为有理数),试比较m,n的大小;

(3)若[]=a+4,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y(千克)与每千克售价x(元)的关系如表所示

每千克售价x(元)

25

30

40

每周销售量y(千克)

240

200

150

1)写出每周销售量y(千克)与每千克售价x(元)的函数关系式;

2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?

3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为1,0,点B的坐标为0,4,已知点Em,0是线段DO上的动点,过点E作PEx轴交抛物线于点P,交BC于点G,交BD于点H

1求该抛物线的解析式;

2当点P在直线BC上方时,请用含m的代数式表示PG的长度;

32的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与DEH相似?若存在,求出此时m的值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解决问题:

截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.

如图1,在ABC中,若AB12AC8,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DEAD,再连接BE,把ABAC2AD集中在ABE中.利用三角形三边的关系即可得4<AE<20 ,则2<AD<10.

1)问题解决:受到上题解法的启发,如图2,在正方形ABCD中,已知:∠EAF=45°,角的两边AEAF分别与BCCD相交于点EF,若BE=2DF=3,求EF的长.可延长 CDE′,使得DE′BE,连接AE′,先证ABE≌△ADE′,进一步证明 AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.

2)问题拓展:

如图3,在⊙O中,ABAD是⊙O的弦,且AB=ADMN是⊙O上的两点,∠MANBAD.

①如图4,连接MNMD,求证:MH=BM+DHDMAN

②若点C(点C不与点ADN重合)上,连接CBCD分别交AMAN或其延长线于点EF,直接写出EFBEDF之间的等式关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:

请根据图中信息,解答下列问题:

(1)该调查的样本容量为________, =________%, =________%,“常常”对应扇形的圆心角的度数为__________;

(2)请你补全条形统计图;

(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的

学生有多少名?

查看答案和解析>>

同步练习册答案