| A. | ∠BDE=120° | B. | ∠ACE=120° | C. | AB=BE | D. | AD=BE |
分析 根据△CDE都是等边三角形,得到∠CDE=60°,利用平角即可证明A;根据△ABC和△CDE都是等边三角形,得到∠ACB=60°,∠DCE=60°,由∠ACE=∠ACB+∠DCE即可证明B;根据等边三角形的性质可得AC=BC,EC=DC,∠ACD=∠BCE=60°,利用“边角边”证明△ACD和△BCE全等,再根据全等三角形对应边相等证明D.
解答 解:∵△CDE都是等边三角形,
∴∠CDE=60°,
∴∠BDE=180°-∠CDE=120°,故A正确;
∵△ABC和△CDE都是等边三角形,
∴∠ACB=60°,∠DCE=60°,
∴∠ACE=∠ACB+∠DCE=60°+60°=120°,故B正确;
∵△ABC和△CDE都是等边三角形,
∴AC=BC,EC=DC,∠ACD=∠BCE=60°.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE=60°}\\{EC=DC}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE.故D正确;
∵△ABD与△EBD不全等,
∴AB≠BE.
故选:B.
点评 本题考查了全等三角形的判定与性质,等边三角形的性质,熟记等边三角形的性质以及全等三角形的判定方法是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$<a<1 | B. | -1<a<$\frac{3}{2}$ | C. | a<1 | D. | a>-$\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com