精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB边的垂直平分线EF交BD于点E,连AE
(1)比较∠AED与∠ABC的大小关系,并证明你的结论
(2)若△ADE是等腰三角形,求∠CAB的度数.
分析:(1)由AB边的垂直平分线EF交BD于点E,根据线段垂直平分线的性质,可得EA=EB,即可证得∠EAB=∠EBA,则可得∠AED=2∠EBA,又由BD平分∠ABC交AC于点D,则可得∠ABC=2∠EBA,则可证得∠AED=∠ABC;
(2)设∠DBC=x°,由△ADE是等腰三角形,可求得∠EAD=∠AED=∠ABC=2x°,∠BAE=∠ABE=∠CBD=x°,则可得方程2x+3x=90,继而求得答案.
解答:解:(1)∠AED=∠ABC.
证明:∵EF垂直平分AB,
∴EA=EB,
∴∠EAB=∠EBA,
∴∠DEA=∠EBA+∠EAB=2∠EBA,
∵BD平分∠ABC,
∴∠ABC=2∠EBA,
∴∠DEA=∠ABC;

(2)∵△ADE是等腰三角形,
∴∠EAD=∠DEA,
∵∠DEA=∠ABC,
设∠DBC=x°,
∴∠ABD=∠DBC=∠BAE=x°,
∴∠ABC=2x°;
∴∠CAB=∠BAE+∠DAE=3x°,
∵∠ABC+∠CAB=90°,
∴2x+3x=90,
解得:x=18,
∴∠CAB=3x°=54°.
点评:此题考查了线段垂直平分线的性质、等腰三角形的性质、角平分线的定义以及三角形内角和定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案