【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A.微信、B.支付宝、C.现金、D.其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为________度;
(3)若该超市这一周内有1800名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
(4) 现随机抽取甲、乙两名购买者进行调查,试用列表或树形图的方法求抽取的两人恰好都是用微信支付概率.
【答案】(1) 200名;(2)108,图见解析;(3) 1044名;(4)见解析
【解析】
(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
(4)根据题意作出表格表示可能的情况,再利用概率公式进行求解.
(1)56÷28%=200(名).
故一共调查了200名购买者
(2) D方式支付的有:200×20%=40(人),
A方式支付的有:200564440=60(人),
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,108,
补全条形统计图如解图所示;
(3)1800×=1044(名).
∴估计使用A和B两种支付方式的购买者共约1044名.
(4)
甲 乙 | 微信 | 支付宝 | 现金 | 其他 |
微信 | (微信,微信) | (支付宝,微信) | (现金,微信) | (其他,微信) |
支付宝 | (微信,支付宝) | (支付宝,支付宝) | (现金,支付宝) | (其他,支付宝) |
现金 | (微信,现金) | (支付宝,现金) | (现金,现金) | (其他,现金) |
其他 | (微信,其他) | (支付宝,其他) | (现,其他) | (其他,其他) |
∴共有16种结果,其中两人都用微信支付的情况有一种,
∴P(两人都用微信)=
科目:初中数学 来源: 题型:
【题目】如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.
(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;
(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?
(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是 (直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,沿AB边向点B以每秒2cm的速度移动,同时点Q从点D出发沿DA边向点A以每秒1cm的速度移动,P、Q其中一点到达终点时,另一点随之停止运动.设运动时间为t秒.回答下列问题:
(1)如图①,几秒后△APQ的面积等于5cm2.
(2)如图②,若以点P为圆心,PQ为半径作⊙P.在运动过程中,是否存在t值,使得点C落在⊙P上?若存在,求出t的值;若不存在,请说明理由.
(3)如图③,若以Q为圆心,DQ为半径作⊙Q,当⊙Q与AC相切时
①求t的值.
②如图④,若点E是此时⊙Q上一动点,F是BE的中点,请直接写出CF的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=,cos∠ACH=,点B的坐标为(4,n)
(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
对称轴为______,顶点坐标为______;
在坐标系中利用五点法画出此抛物线.
x | ______ | ______ | ______ | ______ | ______ | ||
y | ______ | ______ | ______ | ______ | ______ |
若抛物线与x轴交点为A、B,点在抛物线上,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=MF;
(2)若AE=2,求FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=( )
A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm
【答案】A
【解析】试题分析:根据平行线分线段成比例定理得到=,然后利用比例性质求EC的长.
解:∵DE∥BC,
∴=,即=,
∴EC=0.9(cm).
故选A.
考点:平行线分线段成比例.
【题型】单选题
【结束】
6
【题目】点C是线段AB的黄金分割点(AC>BC),若AB=10cm,则AC等于( )
A. 6 cm B. cm C. cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E.
(1)求证:△AMN是等腰三角形;
(2)求证:AM2=2BMAN;
(3)当M为BC中点时,求ME的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com