【题目】如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ(弧)上且不与A点重合,但Q点可与B点重合.
发现.AP(弧)的长与QB(弧)的长之和为定值l,求l;
思考.点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.
探究.当半圆M与AB相切于T时,求AT的长.
【答案】发现: ;思考: ;探究:AT=
【解析】试题分析:发现:半圆O的长度是固定不变的,由于PQ也是定值,所以的长度也是固定值,所以与的长之和为定值;
思考:过点M作MC⊥AB于点C,当C与O重合时,M与AB的距离最大,此时,∠AOP=60°,AP=2;当Q与B重合时,M与AB的距离最小,此时围成的封闭图形面积可以用扇形DMB的面积减去△DMB的面积即可;
探究:分两种情况讨论,当半圆M与AO相切于点T时和半圆M与BO相切于点T时求得.
试题解析:
发现:如图1,连接OP、OQ,
∵AB=4,
∴OP=OQ=2,
∵PQ=2,
∴△OPQ是等边三角形,
∴∠POQ=60°,
∴==,
又∵半圆O的长为:π×4=2π,
∴+=2π﹣π=,
∴l=π;
思考:如图2,过点M作MC⊥AB于点C,
连接OM,
∵OP=2,PM=1,
∴由勾股定理可知:OM=,
当C与O重合时,
M与AB的距离最大,最大值为,
连接AP,
此时,OM⊥AB,
∴∠AOP=60°,
∵OA=OP,
∴△AOP是等边三角形,
∴AP=2,
如图3,当Q与B重合时,
连接DM,
∵∠MOQ=30°,
∴MC=OM=,
此时,M与AB的距离最小,最小值为,
设此时半圆M与AB交于点D,
DM=MB=1,
∵∠ABP=60°,
∴△DMB是等边三角形,
∴∠DMB=60°,
∴扇形DMB的面积为: =,
△DMB的面积为: MCDB=××1=,
∴半圆M的弧与AB所围成的封闭图形面积为:﹣;
探究:
半圆M与AB相切,分两种情况:
①如图:
半圆M与AO相切于点T时,连接PO、MO、TM,则MT AO,OMPQ.
在Rt△TOM中,TO=
AT=2-.
②如图:
半圆M与BO相切于点T时,连接QO、MO、TM,
由对称性,同理得AT=2-.
科目:初中数学 来源: 题型:
【题目】已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,
设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)
(1)填空:EF= .cm,GH= .cm;(用含x的代数式表示)
(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学记数法可表示为( )
A.4.45×103
B.4.45×104
C.4.45×105
D.4.45×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式.(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象经过点(-2,-4),且与正比例函数的图象相交于点(4,a),求:
(1)a的值;
(2)k、b的值;
(3)求出这两个函数的图象与y轴相交得到的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为( )
A.125×104
B.12.5×105
C.1.25×106
D.0.125×107
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com