精英家教网 > 初中数学 > 题目详情
6.如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=-$\frac{1}{x}$、y=$\frac{2}{x}$的图象交于B、A两点,则tanA=$\frac{\sqrt{2}}{2}$.

分析 如图,作辅助线;首先证明△BOM∽△OAN,得到$\frac{BM}{ON}$=$\frac{OM}{AN}$,设B(-m,$\frac{1}{m}$),A(n,$\frac{2}{n}$),得到BM=$\frac{1}{m}$,AN=$\frac{2}{n}$,OM=m,ON=n,进而得到mn=$\frac{2}{mn}$,mn=$\sqrt{2}$,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=$\frac{\sqrt{2}}{2}$,即可解决问题.

解答 解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;

∵∠AOB=90°,
∴∠BOM+∠AON=∠AON+∠OAN=90°,
∴∠BOM=∠OAN,
∵∠BMO=∠ANO=90°,
∴△BOM∽△OAN,
∴$\frac{BM}{ON}$=$\frac{OM}{AN}$;
设B(-m,$\frac{1}{m}$),A(n,$\frac{2}{n}$),
则BM=$\frac{1}{m}$,AN=$\frac{2}{n}$,OM=m,ON=n,
∴mn=$\frac{2}{mn}$,mn=$\sqrt{2}$;
∵∠AOB=90°,
∴tan∠OAB=$\frac{OB}{OA}$①;
∵△BOM∽△OAN,
∴$\frac{OB}{OA}$=$\frac{BM}{ON}$=$\frac{1}{mn}$=$\frac{\sqrt{2}}{2}$②,
由①②知tan∠OAB=$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.从分别标有数-3,-2,-1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数均大于-2的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:(-2016)0+(-$\frac{1}{2}$)-1+|1-$\sqrt{3}$|-8sin60°+$\sqrt{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.2017年中考,阜阳市某区计划在4月中旬的某个周二至周四这3天进行理化加试.王老师和朱老师都将被邀请当监考老师,王老师随机选择2天,朱老师随机选择1天当监考老师.
(1)求王老师选择周二、周三这两天的概率是多少?
(2)求王老师和朱老师两人同一天监考理化加试的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为(  )
A.288°B.144°C.216°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:|1-2sin45°|-$\sqrt{8}$+($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)在点Q从B到A的运动过程中,
①当t=$\frac{9}{8}$时,PQ⊥AC;
②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(2)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.设S1=1+$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$,S2=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$,S3=1+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$,…,Sn=1+$\frac{1}{{n}^{2}}$+$\frac{1}{(n+1)^{2}}$,求$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$+…+$\sqrt{{S}_{{\;}_{n}}}$的值(用含n的代数式表示,其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.有一个程序机(如图),若输入4,则输出值是2,记作第一次操作;将2再次输入,则输出值是1,记作第二次操作;将1再次输入,…,如此循环操作,则第2016次操作输出的数是4.

查看答案和解析>>

同步练习册答案