【题目】阅读下面的情境对话,然后解答问题
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是上一点(不与点A、B重合),D是半圆的中点,CD在直径AB的两侧,若在⊙O内存在点E使得AE=AD,CB=CE.
求证:ACE是奇异三角形;
当ACE是直角三角形时,求∠AOC的度数.
【答案】解:(1)真命题
(2)在RtABC 中a2+b2= c2,
∵c>b>a>0
∴2c2>a2+b2,2a2<c2+b2
∴若RtABC是奇异三角形,一定有2b2=c2+ a2
∴2b2=a2+(a2+b2)
∴b2=2a2 得:b=a
∵c2=b2+ a2=3a2
∴c=
∴a:b: c=
(3)∵AB是⊙O的直径ACBADB=90°
在RtABC 中,AC2+BC2=AB2
在RtADB 中,AD2+BD2=AB2
∵点D是半圆的中点
∴=
∴AD=BD
∴AB2=AD2+BD2=2AD2
∴AC2+CB2=2AD2
又∵CB=CE,AE=AD
∴AC2=CE2=2AE2
∴ACE是奇异三角形
由可得ACE是奇异三角形
∴AC2=CE2=2AE2
当ACE是直角三角形时
【解析】(1)根据“奇异三角形”的定义与等边三角形的性质,求证即可;
(2)根据勾股定理与奇异三角形的性质,可得a2+b2=c2与a2+c2=2b2,用a表示出b与c,即可求得答案;
(3)①AB是⊙O的直径,即可求得∠ACB=∠ADB=90°,然后利用勾股定理与圆的性质即可证得;
②利用(2)中的结论,分别从AC:AE:CE=去分析,即可求得结果.
科目:初中数学 来源: 题型:
【题目】如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.
(1)试判断EF与⊙O的位置关系,并说明理由.
(2)若DC=2,EF=,点P是⊙O上不与E、C重合的任意一点,则∠EPC的度数为 (直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数分别填入相应的集合里
+6,﹣8,﹣0.4,0,230%, ,﹣1 ,﹣(﹣5),﹣|﹣2|,﹣ ,0.010010001…,﹣2.33…
(1)正数集合:{};
(2)负数集合:{ };
(3)整数集合:{};
(4)无理数集合:{}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法正确的是
A. 每个内角都是120°的六边形一定是正六边形.
B. 正n边形的对称轴不一定有n条.
C. 正n边形的每一个外角度数等于它的中心角度数.
D. 正多边形一定既是轴对称图形,又是中心对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张长方形纸条上画一条数轴.
(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;
(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);
(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分7分)如图,已知二次函数的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.
(1)求一次函数解析式;
(2)求顶点P的坐标;
(3)平移直线AB使其过点P,如果点M在平移后的直线上,且,求点M坐标;
(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线交x轴于点C,交y轴于点D,与反比例函数的图像交于两点A、E,AG⊥x轴,垂足为点G,S△AOG=3.
(1)k = ;
(2)求证:AD =CE;
(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在10×10正方形网格中,每个小正方形的边长均为1个单位长度.点B、C坐标分别为(﹣4,2)、(﹣1,2).
(1)在图中建立平面直角坐标系,写出点A的坐标;
(2)将△ABC先向下平移4个单位,再向右平移5个单位得到△A1B1C1 , 画出△A1B1C1 , 并写出点C1的坐标;
(3)M(a,b)是△ABC内的一点,△ABC经过某种变换后点M的对应点为M2(a+1,b﹣7),画出△A2B2C2 . 并求出△A2B2C2的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com