精英家教网 > 初中数学 > 题目详情

【题目】如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.

(1)试判断EF与⊙O的位置关系,并说明理由.

(2)若DC=2,EF=,点P是⊙O上不与E、C重合的任意一点,则∠EPC的度数为 (直接写出答案)

【答案】(1)EF与⊙O相切,证明见解析;(2)600或1200

【解析】(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.通过△EFO≌△CFO(SAS),证得∠FEO=∠FCO=90°,则直线EF与⊙O相切.
(2)根据圆内接四边形的性质得到∠EPC+∠D=180°,利用(1)中的全等三角形的对应边相等求得FC=EF=,所以通过解直角△BCD来求∠D的度数即可.

解:(1)直线EF与⊙O相切.理由如下:
如图,连接OE、OF.


∵OD=OE,
∴∠1=∠D.
∵点F是BC的中点,点O是DC的中点,
∴OF∥BD,
∴∠3=∠D,∠2=∠1,
∴∠2=∠3.
∴在△EFO与△CFO中,

OE=OC,∠2=∠3,OF=OF,

∴△EFO≌△CFO(SAS),
∴∠FEO=∠FCO=90°,
∴直线EF与⊙O相切.

(2)如图,连接DF.
∵由(1)知,△EFO≌△CFO,
∴FC=EF=
∴BC=2
在直角△FDC中,tan∠D==
∴∠D=60°.

当点P在上时,
∵点E、P、C、D四点共圆,
∴∠EPC+∠D=180°,
∴∠EPC=120°.
当点P在 上时,

∠EPC=∠D=60°,

故填:60°或120°.
“点睛”本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】化简:2(a+1)2+(a+1)(1-2a).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多边形的边数每减少一条,则它的内角和(
A.增加180°
B.增加360°
C.不变
D.减小180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻测量某市地面温度为20 ℃.设高出地面x km处的温度为y ℃,则y与x的函数关系式为___,y___x的一次函数(填“是”或“不是”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,BE,CF分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.

(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形具有而矩形不具有性质是(  )

A. 对角线相等 B. 对角线互相平分 C. 对角线互相垂直 D. 对角线平分且相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任意抛掷一枚骰子两次,骰子停止转动后,计算朝上的点数的和.
(1)和最小的是多少,和最大的是多少?
(2)下列事件:①点数的和为7;②点数的和为1;③点数的和为15.哪些是不可能性事件?哪些是不确定事件?
(3)点数的和为7与点数的和为2的可能性谁大?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.
求证:BD=EC+ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的情境对话,然后解答问题

1)根据奇异三角形的定义,请你判断小华提出的命题:等边三角形一定是奇异三角形是真命题还是假命题?

2)在RtABC 中, ACB90°ABcACbBCa,且ba,若RtABC是奇异三角形,求abc

3)如图,ABO的直径,C是上一点(不与点AB重合),D是半圆的中点,CD在直径AB的两侧,若在O内存在点E使得AEADCBCE

求证:ACE是奇异三角形;

ACE是直角三角形时,求AOC的度数.

查看答案和解析>>

同步练习册答案