精英家教网 > 初中数学 > 题目详情
下列说法
①如图,扇形的圆心角,点上异于的动点,过点,作,连接,点在线段上,且,连接。当点上运动时,在中,长度不变的是
   
②如图,正方形纸片的边长为,⊙的半径为,圆心在正方形的中心上,将纸片按图示方式折叠,折叠后点于点重合,且切⊙于点,延长边于点,则的长为
③已知中,,则其内心和外心之间的距离是。其中正确的有     (请写序号,少选,错选均不得分)
①②
①解:连接OC,如图1,

∵扇形OAB的圆心角∠AOB=90°,CD⊥OA于D,CE⊥OB于E,
∴∠AOE=∠CEO=∠CDO=90°,
∴四边形EODC是矩形,
∴OC=DE,
∵DG=DE,
∴DG=OC=DE,
∴当点C在上运动时,在CD、CG、DG中,长度不变的是DG,故该选项正确;
②解:连AC,过F作FM⊥DC于M,如图2.

∵△AEF沿EF折叠得到△HEF,
∴∠EHF=∠EAF=90°,FH=FA,
∵EH恰好与⊙0相切于点H,
∴OH⊥EH,
∴点F、H、O共线,即FG过圆心O,
又∵点O为正方形的中心,
∴AC经过点O,
∴OA=OC,
在△OAF和△OCG中,

∴△OAF≌△OCG,
∴OF=OG,AF=CG,
∵OA′=ON,
∴FA′=GN,
设FA=x,DC=8,ON=2,则FH=DM=CG=GN=x,FG=FM+HN+NG=2x+4,MG=DC-DM-CG=8-2x,
在Rt△FGH中,FG2=FM2+MG2
∴(2x+4)2=82+(8-2x)2,解得x=
HG=HN+NG=4+=,故该选项正确;
③解:如图3,在Rt△ABC,∠C=90°,AC=3cm,BC=4cm,

∴AB=5cm,
∴AM为外接圆半径,
∴AM=1/2AB=2.5cm
设Rt△ABC的内切圆的半径为r,则OD=OE=r,∠C=90°,
∵四边形OECD是正方形,
∴CE=CD=r,AE=AN=3-r,BD=BN=4-r,
即4-r+3-r=5,
解得r=1cm,
∴AN=2cm;
在Rt△OMN中,
MN=AM-AN=-2=cm,∴OM=
∴内心和外心之间的距离是cm,故该选项错误;
故答案为:①②.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

直径12cm的圆中,垂直平分半径的弦长为           cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是⊙上的三点,已知,则(▲).
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正六边形的半径为,则它的外接圆与内切圆组成的圆环的面积是_______

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,三点是上的点,,则的度数是()
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙I为△ABC的内切圆,AB=9,BC=8,CA=10,点D,E分别为AB,AC上的点,且DE为⊙I的切线,
求△ADE的周长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题10分)如图,已知圆锥的底面半径为10 ,母线长为40 .

(1)求圆锥侧面展开图的圆心角;
(2)若一小虫从点A出发沿圆锥侧面绕行到母线CA的中点B处,求它所走的最短路程是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,分别以ABAC为直径在△ABC外作半圆和半圆,其中分别为两个半圆的圆心. F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.

(1)连结
证明:
(2)如图,过点A分别作半圆和半圆的切线,交BD的延长线和CE的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;

(3)如图三,过点A作半圆的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA. 证明:PA是半圆的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,弦CD∥AB,若∠ABD=65°,则∠  ADC=____________.

查看答案和解析>>

同步练习册答案