【题目】如图,在平面直角坐标系中,四边形OABC是平行四边形.直线L经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当Q、M两点相遇时,P、Q两点停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.
(1)点C的坐标为 ,直线L的解析式为 .
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线L相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
【答案】(1)(3,4),y= x;(2)①当0<t≤,S= t2+ t;②当<t≤3时,S= -2t2+t, ③当点Q与点M相遇时,S=﹣6t+32;(3) 当时,S有最大值,最大值为.(4) 当t=时,△QMN为等腰三角形.
【解析】(1)由平行四边形的性质和点A、B的坐标便可求出C点坐标,将C点坐标代入正比例函数即可求得直线l的解析式;
(2)根据题意,得OP=t,AQ=2t,根据t的取值范围不同分三种情况分别进行讨论,得到三种S关于t的函数,解题时注意t的取值范围;
(3)分别根据三种函数解析式求出当t为何值时,S最大,然后比较三个最大值,可知当t=时,S有最大值,最大值为;
(4)根据题意并细心观察图象,分两种情况讨论可知:当t=时,△QMN为等腰三角形.
解:(1)由题意知:点A的坐标为(8,0),点B的坐标为(11.4),
且OA=BC,故C点坐标为C(3,4),设直线l的解析式为y=kx,将C点坐标代入y=kx,解得k=,
∴直线l的解析式为y= x;故答案为:(3,4),y= x;
(2)根据题意,得OP=t,AQ=2t.分四种情况讨论:
①当0<t≤时,如图1,M点的坐标是(t, t).过点C作CD⊥x轴于D,过点Q作QE⊥x轴于E,可得△AEQ∽△ODC,∴ = =,∴ = =,∴AE =,EQ= t,∴Q点的坐标是(8+ t, t),∴PE=8+t-t= 8+t,∴S=·MP·PE=·t·(8+t)= t2+ t;
②当<t≤3时,如图2,过点Q作QF⊥x轴于F,∵BQ=2t﹣5,∴OF=11﹣(2t﹣5)=16﹣2t,
∴Q点的坐标是(16﹣2t,4),∴PF=16﹣2t﹣t=16﹣3t,
∴S=·MP·PF=·t·(16-3t)= -2t2+t,
③当点Q与点M相遇时,16﹣2t=t,解得t =.当3<t<时,如图3,MQ=16﹣2t﹣t=16﹣3t,MP=4.S=·MP·PF =·4·(16-3t)=﹣6t+32;
(3)解:① 当时,,∵,抛物线开口向上,对称轴为直线, ∴ 当时,S随t的增大而增大.
∴ 当时,S有最大值,最大值为.
②当时,。∵,抛物线开口向下.
∴当时,S有最大值,最大值为.
③当时,,∵.∴S随t的增大而减小.
又∵当时,S=14.当时,S=0.∴.
综上所述,当时,S有最大值,最大值为.
(4)M、Q在BC边上运动且没有相遇时,如图4,CM=t-3,BQ= 2t-5,MN=(t-3),∴MQ= 8-(t-3)-(2t-5)= 16-3t,∴只有(t-3)=16-3t,即当t=时,△QMN为等腰三角形.
“点睛”本题是二次函数的综合题,其中涉及到的知识点有抛物线最大值的求法和动点问题等知识点,是各地中考的热点和难点,解题时注意数形结合和分类讨论等数学思想的运用,同学们要加强训练,属于难题.
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.
(1)依题意补全图1;
(2)若∠PAB=30°,求∠ACE的度数;
(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1 , 第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5个单位,得到长方形AnBnCnDn(n>2),若ABn的长度为56,则n=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
… | 0 | 1 | 2 | 3 | 4 | … | |||||
… | 3 | 0 | 0 | 3 | … |
其中,=____________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分.
(3)观察函数图像,写出两条函数的性质:
(4)进一步探究函数图像发现:
①函数图像与轴有__________个交点,所以对应方程有___________个实数根;
②方程有___________个实数根;
③关于的方程有4个实数根,的取值范围是_______________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC、BD相交于点O,增加下列条件后,ABCD不一定是菱形的是( )
A.DC=BC
B.AC⊥BD
C.AB=BD
D.∠ADB=∠CDB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com