【题目】如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.
【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.
【解析】
试题分析:(1)只要证到三个内角等于90°即可.
(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.
②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.
试题解析:解:(1)证明:如图,
∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.
∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.
∴四边形EFCG是矩形.
(2)①存在.
如答图1,连接OD,
∵四边形ABCD是矩形,∴∠A=∠ADC=90°.
∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.
∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.
∵AD=4,AB=3,∴BD=5.
∴. ∴S矩形ABCD=2S△CFE=.
∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.
∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.
∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°
Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.
此时,CF=CB=4.
Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=3.
Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCD=BCCD=BDCF″′.
∴4×3=5×CF″′.∴CF″′=.
∴≤CF≤4.
∵S矩形ABCD=,∴,即.
∴矩形EFCG的面积最大值为12,最小值为.
②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,
∴点G的移动路线是线段DG″.
∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.
∴,即,解得.
∴点G移动路线的长为.
科目:初中数学 来源: 题型:
【题目】学习千万条,思考第一条。请你用本学期所学知识探究以下问题:
(1)已知点为直线上一点,将直角三角板的直角顶点放在点处,并在内部作射线.
①如图1,三角板的一边与射线重合,且,若以点为观察中心,射线表示正北方向,求射线表示的方向;
②如图2,将三角板放置到如图位置,使恰好平分,且,求的度数.
(2)已知点不在同一条直线上,,平分,平分,用含的式子表示的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件40元,售价不低于50元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x元,每月的销售量为y件.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
(2)推测第n个图形中,正方形的个数为 ,周长为 (都用含n的代数式表示).
(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知直角三角形纸板ABC,直角边AB=4 cm,BC=8 cm.
(1)将直角三角形纸板ABC绕三角形的边所在的直线旋转一周,能得到_____种不同的几何体;
(2)分别计算绕三角形直角边所在的直线旋转一周,得到几何体的体积.(取3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.
根据以上材料,结合数轴与绝对值的知识回答下列问题:
(1)将数﹣5,﹣,0,2.5在数轴上表示出来.
(2)若数轴上表示数a的点位于﹣3与2之间,那么|a+3|+|a﹣2|的值是多少?
(3)若A是数轴上的一个点,它表示数a,则|a+5|+|a﹣3|的最小值是多少?当a取多少时|a+5|+|a﹣1|+|a﹣3|有最小值?最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.
(1)观察猜想:如图1,当点在线段上时,
①与的位置关系为:______.②,,之间的数量关系为:______;(将结论直接写在横线上)
(2)数学思考:如图2,当点在线段的延长线上时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸:如图3,当点在线段的延长线上时,延长交于点,连接.若已知,,请直接写出的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com