精英家教网 > 初中数学 > 题目详情
15.2002年8月在北京召开的国际数学家大会会标,它是有四个全等的小正方形拼成的一个大正方形(如图所示),若大正方形的面积为13,小正方形较长的直角边为a,较短的直角边为b,则(a+b)2的值为(  )
A.13B.19C.25D.169

分析 根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.

解答 解:根据勾股定理可得a2+b2=13,
四个直角三角形的面积是:$\frac{1}{2}$ab×4=13-1=12,即:2ab=12   
则(a+b)2=a2+2ab+b2=13+12=25.
故选C.

点评 本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.有且只有一条直线垂直于已知直线
B.互相垂直的直线一定相交
C.从直线外一点到这条直线的垂线段叫做点到直线的距离
D.直线L外一点P与直线L上各点连接而成的线段中最短线段的长度是3cm,则点P到直线L的距离是3cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.不等式$\left\{\begin{array}{l}{\frac{2x-1}{3}-\frac{5x-3}{6}<1,①}\\{|2x-1|≤5,②}\end{array}\right.$的解集是关于x的一元一次不等式ax>-1解集的一部分,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某文具店销售甲、乙两种圆规,销售5只甲种、1只乙种圆规,可获利润25元;销售6只甲种、3只乙种圆规,可获利润39元.
(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?
(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获利p与a的函数关系式.并求当a≥30时p的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,四边形ABCD中,∠BAD+∠BCD=180°,AD,BC的延长线交于点F,DC,AB的延长线交于点E,∠E,∠F的平分线交于点H.求证:EH⊥FH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,∠BAC=90°,∠EDC=90°,∠DCE=30°,ED=2,AB=3,求S△CEB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(0,0),B(2,0)两点,请你写出一组满足条件的实数a,b的对值:a=1,b=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{1\frac{15}{49}}$  (2)-$\sqrt{1\frac{2}{3}}$÷$\sqrt{\frac{5}{54}}$   (3)$\sqrt{\frac{0.16×144}{0.64×100}}$  (4)3$\sqrt{20}$÷$\frac{3}{2}$$\sqrt{2\frac{2}{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在实数范围内,因式分解:x4-11x2+28=(x+2)(x+$\sqrt{2}$)(x-$\sqrt{2}$)(x+$\sqrt{7}$)(x-$\sqrt{7}$).

查看答案和解析>>

同步练习册答案