【题目】如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.
(1)当直线l经过点C时(如图2),求证:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.
【答案】(1)证明见解析;(2)CD=2CE;(3)当点M 在线段BC 上时,CD=BN+CE ; 当点M 在BC 的延长线上时,CD=BN-CE ; 当点M 在CB 的延长线上时,CD=CE-BN.
【解析】试题分析:(1)连接ND,先由已知条件证明:DN=DC,再证明BN=DN即可;
(2)当M是BC中点时,CE和CD之间的等量关系为CD=2CE,过点C作CN'⊥AO交AB于N'.过点C作CG∥AB交直线l于G,再证明△BNM≌△CGM问题得证;
(3)BN、CE、CD之间的等量关系要分三种情况讨论:①当点M在线段BC上时;②当点M在BC的延长线上时;③当点M在CB的延长线上时.
试题解析:(1 )证明:连接ND ,
∵AO 平分∠BAC , ∴∠1= ∠2 ,
∵直线l ⊥AO 于H , ∴∠4= ∠5=90 °, ∴∠6= ∠7 , ∴AN=AC ,
∴NH=CH , ∴AH 是线段NC 的中垂线,∴DN=DC ,∴∠8= ∠9 ,∴∠AND= ∠ACB ,
∵∠AND= ∠B+ ∠3 ,∠ACB=2 ∠B , ∴∠B= ∠3 , ∴BN=DN , ∴BN=DC ;
(2 )如图,当M 是BC 中点时,CE 和CD 之间的等量关系为CD=2CE.
证明:过点C 作CN' ⊥AO 交AB 于N' ,
由(1 )可得BN'=CD ,AN'=AC ,AN=AE ,∴∠4= ∠3 ,NN'=CE ,
过点C 作CG ∥AB 交直线l 于G ,∴∠4= ∠2 ,∠B= ∠1 ,∴∠2= ∠3 ,∴CG=CE ,
∵M 是BC 中点, ,∴BM=CM ,
∴在△BNM 和△CGM 中,△BNM ≌△CGM , ∴BN=CG ,∴BN=CE ,
∴CD=BN'=NN'+BN=2CE ;
(3 )BN 、CE 、CD 之间的等量关系:
当点M 在线段BC 上时,CD=BN+CE ;
当点M 在BC 的延长线上时,CD=BN-CE ;
当点M 在CB 的延长线上时,CD=CE-BN.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,弦ED⊥AB于点F,点C是劣弧AD上的动点(不与点A、D重合),连接BC交ED于点G.过点C作⊙O的切线与ED的延长线交于点P.
(1)求证:PC=PG;
(2)当点G是BC的中点时,求证:;
(3)已知⊙O的半径为5,在满足(2)的条件时,点O到BC的距离为,求此时△CGP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a-2)+b+3=0,其中a、b为有理数,那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b为有理数,求a+2b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师对她所教学生的学习兴趣进行了一次抽样调查,她把学生的学习兴趣分为三个层次:很感兴趣;较感兴趣和不感兴趣;并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,帮助李老师解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)补全条形统计图,并在扇形统计图中填上百分数;
(3)求图②中表示“不感兴趣”部分的扇形所对的圆心角;
(4)根据抽样调查的结果,请你估计李老师所在的学校800名学生中大约有多少名学生对学习感兴趣(包括“很感兴趣”和“较感兴趣”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com