【题目】李老师对她所教学生的学习兴趣进行了一次抽样调查,她把学生的学习兴趣分为三个层次:很感兴趣;较感兴趣和不感兴趣;并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,帮助李老师解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)补全条形统计图,并在扇形统计图中填上百分数;
(3)求图②中表示“不感兴趣”部分的扇形所对的圆心角;
(4)根据抽样调查的结果,请你估计李老师所在的学校800名学生中大约有多少名学生对学习感兴趣(包括“很感兴趣”和“较感兴趣”).
【答案】(1)200(2)图形见解析(3)54°(4)680
【解析】
试题分析:(1)根据很感兴趣的人数是50,所占的百分比是25%,据此即可求得调查的总人数;
(2)根据总人数减去其它组的人数求得不感兴趣的人数,利用百分比的意义求得百分比;
(3)用360°乘以对应的百分比即可求得圆心角的度数;
(4)利用总数乘以对应的百分比即可求得.
试题解析:(1)调查的学生是50÷25%=200,故答案是200;
(2)不感兴趣的人数是200﹣50﹣120=30(人),
“较感兴趣”60%,“不感兴趣”15%,
;
(3)360°×15%=54°;
(4)800×(25%+60%)=680(名).
所以估计李老师所在的学校800名学生中大约有680名学生对学习感兴趣.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,且B(3,0),AB=2
(1)求该抛物线的函数关系式;
(2)如果抛物线的对称轴上存在一点P,使得△APC的周长最小,求此时P点的坐标,并求出△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.
(1)当直线l经过点C时(如图2),求证:BN=CD;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2m高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13m的距离(点B,F,C在同一条直线上)
(1)请你帮小明计算一下学校教学楼的高度;
(2)为了迎接上级领导检查,学校准备在AE之间挂一些彩旗,请计算AE之间的长.(结果精确到1m,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】位于汉江沿岸的小明家、学校、医院、游乐场的平面图如图所示.
(1)建立适当的平面直角坐标系,使医院的坐标为(3,0)并写出小明家、学校、游乐场的坐标;
(2)根据蜀河大坝蓄水工程需要,小明家及学校、医院、游乐场需要等距离整体迁移,已知迁移后新的小明家、学校、游乐场、医院分别用A、B、C、D表示,且这四点的坐标分别用原来各地点的横坐标都减去5、纵坐标都加上2 得到,请先在图中描出A、B、C、D的位置,画出四边形ABCD,
然后说明四边形ABCD是由以小明家、学校、游乐场、医院所在地为顶点的四边形经过怎样平移得到的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90,点D为AB边上的一点,
(1)试说明:∠EAC=∠B ;
(2)若AD=15,BD=36,求DE的长.
(3)若点D在A、B之间移动,当点D为 时,AC与DE互相平分.
(直接写出答案,不必说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com