【题目】如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
【答案】
(1)
解:由题意可得A(0,2),B(2,2),C(3,0),
设所求抛物线的解析式为y=ax2+bx+c(a≠0),
则 ,
解得 ;
∴抛物线的解析式为y=﹣ + x+2
(2)
解:设抛物线的顶点为G,
则G(1, ),过点G作GH⊥AB,垂足为H,
则AH=BH=1,GH= ﹣2= ;
∵EA⊥AB,GH⊥AB,
∴EA∥GH;
∴GH是△BEA的中位线,
∴EA=2GH= ;
过点B作BM⊥OC,垂足为M,则BM=OA=AB;
∵∠EBF=∠ABM=90°,
∴∠EBA=∠FBM=90°﹣∠ABF,
∴Rt△EBA≌Rt△FBM,
∴FM=EA= ;
∵CM=OC﹣OM=3﹣2=1,
∴CF=FM+CM=
(3)
解:设CF=a,则FM=a﹣1,
∴BF2=FM2+BM2=(a﹣1)2+22=a2﹣2a+5,
∵△EBA≌△FBM,
∴BE=BF,
则S△BEF= BEBF= (a2﹣2a+5),
又∵S△BFC= FCBM= ×a×2=a,
∴S= (a2﹣2a+5)﹣a= a2﹣2a+ ,
即S= (a﹣2)2+ ;
∴当a=2(在0<a<3范围内)时,S最小值= .
【解析】(1)根据OA、AB、OC的长,即可得到A、B、C三点的坐标,进而可用待定系数法求出抛物线的解析式;(2)此题要通过构造全等三角形求解;过B作BM⊥x轴于M,由于∠EBF是由∠DBC旋转而得,所以这两角都是直角,那么∠EBF=∠ABM=90°,根据同角的余角相等可得∠EBA=∠FBM;易知BM=OA=AB=2,由此可证得△FBM≌△EBA,则AE=FM;CM的长易求得,关键是FM即AE的长;设抛物线的顶点为G,由于G点在线段AB的垂直平分线上,若过G作GH⊥AB,则GH是△ABE的中位线,G点的坐标易求得,即可得到GH的长,从而可求出AE的长,即可由CF=CM+FM=AE+CM求出CF的长;(3)由(2)的全等三角形易证得BE=BF,则△BEF是等腰直角三角形,其面积为BF平方的一半;△BFC中,以CF为底,BM为高即可求出△BFC的面积;可设CF的长为a,进而表示出FM的长,由勾股定理即可求得BF的平方,根据上得出的两个三角形的面积计算方法,即可得到关于S、a的函数关系式,根据函数的性质即可求出S的最小值及对应的CF的长.
科目:初中数学 来源: 题型:
【题目】为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45°
B.50°
C.55°
D.60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.
(1)求二次函数的解析式;
(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;
(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y1= (x<0)图象上一点,AO的延长线交函数y2= (x>0,k<0)的y2图象于点B,BC⊥x轴,若S△ABC= ,求函数y2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年中考,阜阳市某区计划在4月中旬的某个周二至周四这3天进行理化加试.王老师和朱老师都将被邀请当监考老师,王老师随机选择2天,朱老师随机选择1天当监考老师.
(1)求王老师选择周二、周三这两天的概率是多少?
(2)求王老师和朱老师两人同一天监考理化加试的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.
(1)求抛物线的解析式;
(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?
(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】准备一张矩形纸片,按如图操作: 将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.
(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com