【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.
(1)求二次函数的解析式;
(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;
(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵A(4,0),对称轴是直线x=l,
∴D(﹣2,0).
又∵C(0,﹣3)
∴
解得.a= ,b=﹣ ,c=﹣3,
∴二次函数解析式为:y= x2﹣ x﹣3.
(2)
解:如图1所示:
设M(m, x2﹣ x﹣3),|yM|=﹣ m2+ m+3,
∵S=S△ACM+S△OAM
∴S= ×OC×m+ ×OA×|yM|= ×3×m+ ×4×(﹣ m2+ m+3)=﹣ m2+3m+6=﹣ (m﹣2)2+9,
当m=2时,s最大是9.
(3)
解:当AB为平行四边形的边时,则AB∥PC,
∴PC∥x轴.
∴点P的纵坐标为﹣3.
将y=﹣3代入得: x2﹣ x﹣3=﹣3,解得:x=0或x=2.
∴点P的坐标为(2,﹣3).
当AB为对角线时.
∵ABCP为平行四边形,
∴AB与CP互相平分,
∴点P的纵坐标为3.
把y=3代入得: x2﹣ x﹣3=3,整理得:x2﹣2x﹣16=0,解得:x=1+ 或x=1﹣ .
综上所述,存在点P(2,﹣3)或P(1+ ,3)或P(1﹣ ,3)使得以A,B、C,P四点为顶点的四边形为平行四边形.
【解析】(1)利用抛物线的对称性可得到点D的总表,然后将A、C、D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2)设M(m, x2﹣ x﹣3),|yM|=﹣ m2+ m+3,由S=S△ACM+S△OAM可得到S与m的函数关系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB∥PC,则点P的纵坐标为﹣3,将y=﹣3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3,把y=3代入抛物线的解析式可求得点P的横坐标.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣ x﹣ 交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的相等;或者先证明四边形是菱形,在证明这个菱形有一个角是 .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2 , 对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.
(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;
(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com