精英家教网 > 初中数学 > 题目详情

【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.
(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;

(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?

【答案】
(1)


(2)

解:小彬家与学校的距离是:2﹣(﹣1)=3(km).

故小彬家与学校之间的距离是3km


(3)

解:小明一共跑了(2+1.5+1)×2=9(km),

小明跑步一共用的时间是:9000÷250=36(分钟).

答:小明跑步一共用了36分钟长时间


【解析】(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.
【考点精析】解答此题的关键在于理解数轴的相关知识,掌握数轴是规定了原点、正方向、单位长度的一条直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.

(1)求二次函数的解析式;
(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;
(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.

(1)求抛物线的解析式;
(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?
(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是假命题的是(
A.三角形的内心到三角形三条边的距离相等
B.三角形三条边的垂直平分线的交点到三角形三个顶点的距离相等
C.对于实数a,b,若|a|≤|b|,则a≤b
D.对于实数x,若 =x,则x≥0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题
如图1,等边△ABC中,BC=4,点P从点B出发,沿BC方向运动到点C,点P关于直线AB、AC的对称点分别为点M、N,连接MN.

(1)【发现】
当点P与点B重合时,线段MN的长是
当AP的长最小时,线段MN的长是
(2)【探究】
如图2,设PB=x,MN2=y,连接PM、PN,分别交AB,AC于点D,E.
用含x的代数式表示PM= , PN=
(3)求y关于x的函数关系式,并写出y的取值范围;
(4)当点P在直线BC上的什么位置时,线段MN=3 (直接写出答案)
(5)【拓展】
如图3,求线段MN的中点K经过的路线长.

(6)【应用】
如图4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,则△PQR周长的最小值是
(可能用到的数值:sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】准备一张矩形纸片,按如图操作: 将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.

(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣ 1﹣| ﹣1|+2sin60°+(π﹣4)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围。
(2)顾客一次性购买多少件时,该网店从中获利最多?

查看答案和解析>>

同步练习册答案