精英家教网 > 初中数学 > 题目详情
1.如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为(  )
A.(2,0)B.(0,2)C.(0,-2)D.(-2,0)

分析 首先求出点P1,P2,P3,P4的坐标,从而发现点的坐标以4为周期,作循环往复的周期变化,即可解决问题.

解答 解:∵点P坐标为(0,2),点A坐标为(1,1),
∴点P关于点A的对称点P1的坐标为(2,0),
点P1关于点B(1,-1)的对称点P2的坐标(0,-2),
点P2关于点C(-1,-1)的对称点P3的坐标为(-2,0),
点P3关于点D(-1,1)的对称点P4的坐标为(0,2),
即点P4与点P重合了;
∵2017=4×504+1,
∴点P2017的坐标与点P1的坐标相同,
∴点P2017的坐标为(2,0),
故选:A.

点评 此题主要考查了点的坐标,解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.先化简再求值:$\frac{2x-2}{x}$÷(x-$\frac{1}{x}$)(其中x=$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,点O是△ABC内部一点,⊙O经过△ABC的顶点A、B、C,若∠BCO=45°,则∠BAC的大小为(  )
A.22.5°B.35°C.45°D.67.5°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:$\frac{{x}^{2}-2x+1}{2x+4}$÷(x-$\frac{1+2x}{x+2}$),其中x的值从不等式组$\left\{\begin{array}{l}{-x≤2}\\{\frac{3}{2}x-1<2}\end{array}\right.$的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在下列命题中:
①同旁内角互补;
②两点确定一条直线;
③两条直线相交,有且只有一个交点;
④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.
其中属于真命题的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{3\sqrt{3}}{4}$C.2-$\sqrt{3}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m2)与工作时间t(h)的函数关系的图象如图,则休息完后园林队每小时绿化面积为(  )
A.75m2B.50m2C.31.25m2D.25m2

查看答案和解析>>

同步练习册答案