精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,ABAC,点DEF分别在边BCACAB上,且BDCEDCBF,连结DEEFDF,∠160°

1)求证:BDF≌△CED

2)判断ABC的形状,并说明理由.

【答案】1)见解析;(2ABC是等边三角形,理由见解析

【解析】

(1)用SAS定理证明三角形全等;(2)由BDF≌△CED得到∠BFD=∠CDE然后利用三角形外角的性质求得∠B=∠160°,从而判定△ABC的形状.

解:(1)证明:∵ABAC

∴∠B=∠C

BDFCED

∴△BDF≌△CEDSAS);

2ABC是等边三角形,理由如下:

由(1)得:BDF≌△CED

∴∠BFD=∠CDE

∵∠CDF=∠B+BFD=∠1+CDE

∴∠B=∠160°

ABAC

∴△ABC是等边三角形;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题背景:如图,点为线段外一动点,且,若,连接,求的最大值.解决方法:以为边作等边,连接,推出,当点的延长线上时,线段取得最大值

问题解决:如图,点为线段外一动点,且,若,连接,当取得最大值时,的度数为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①,四边形ABCDCEFG均为正方形.易知BE=DG

探究:如图②,四边形ABCDCEFG均为菱形,且∠A=∠F.求证:BE=DG

应用:如图③,四边形ABCDCEFG均为菱形,点E在边AD上,点GAD的延长线上.若AE=3ED, ∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)因式分解:

2)解方程:

3)先化简:,然后四个数中选一个你认为合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,BC为O的切线,D为O上的一点,CD=CB,延长CD交BA的延长线于点E.

(1)求证:CD为O的切线;

(2)若BD的弦心距OF=1,ABD=30°,求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司推出①②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x()与费用y()之间的函数关系如图所示.

(1)有月租的收费方式是________(”),月租费是________元;

(2)分别求出①②两种收费方式中y与自变量x之间的函数表达式;

(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:小腾遇到这样一个问题:如图1,在ABC中,点D在线段BC上,BAD=75°,CAD=30°,AD=2,BD=2DC,求AC的长.

小腾发现,过点C作CEAB,交AD的延长线于点E,通过构造ACE,经过推理和计算能够使问题得到解决(如图 2).

请回答:ACE的度数为 ,AC的长为

参考小腾思考问题的方法,解决问题:

如图 3,在四边形 ABCD中,BAC=90°,CAD=30°,ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为Sm2).①如图1,若BC4m,则S m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为 m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同。

1)求从袋中摸出一个球是黄球的概率;

2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出了多少个黑球?

查看答案和解析>>

同步练习册答案