精英家教网 > 初中数学 > 题目详情

【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为Sm2).①如图1,若BC4m,则S m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为 m

【答案】88π

【解析】

解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:

由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,S=×π102+π62+π42=88π;

(2)如图2,设BC=x,则AB=10﹣x,∴S=π102+πx2+π(10﹣x2

=x2﹣10x+250)=x2﹣5x+250),当x=时,S取得最小值,BC=

故答案为:88π;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A30),B06)分别在x轴,y轴上,反比例函数(x0)的图像经过点D,则值为( )

A. 14 B. 14 C. 7 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,点DEF分别在边BCACAB上,且BDCEDCBF,连结DEEFDF,∠160°

1)求证:BDF≌△CED

2)判断ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y12x2的图象与y轴交于点A,一次函数y2的图象与y轴交于点B06),点C为两函数图象交点,且点C的横坐标为2

1)求一次函数y2的函数解析式;

2)求△ABC的面积;

3)问:在坐标轴上,是否存在一点P,使得SACP2SABC,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的两条直角边长分别为68,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.

(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.

方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)

方案2:作A点关于直线CD的对称点,连接CD M点,水厂建在M点处,分别向两村修管道AMBM. (即AM+BM) (如图)

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.

(2)有一艘快艇Q从这条河中驶过,当快艇QCD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,.为最长边.时,是直角三角形;当时,利用代数式的大小关系,探究的形状(按角分类).

1)当三边分别为689时,______三角形;当三边分别为6811时,______三角形.

2)猜想,当______时,为锐角三角形;当______时,为钝角三角形.

3)判断当时,的形状,并求出对应的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F

1ABAC的大小有什么关系?请说明理由;

2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是(  )

A. 2 B. C. D.

查看答案和解析>>

同步练习册答案