【题目】如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.
(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.
方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)
方案2:作A点关于直线CD的对称点,连接交CD 于M点,水厂建在M点处,分别向两村修管道AM和BM. (即AM+BM) (如图)
从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.
(2)有一艘快艇Q从这条河中驶过,当快艇Q与CD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.
【答案】(1)方案1更合适;(2)QG=时,△ABQ为等腰三角形.
【解析】
(1)分别求出两种路线的长度进行比较;(2)分类讨论,然后解直角三角形.
(1)过A点作AE⊥BD于E,
∵BD=4,AC=1,
∴BE=3.
∵AE=CD=4,BE=3,
在△ABE中,根据勾股定理得:
AB=,
=5.
过A,作A,H⊥BD于H,
在直角三角形A,HB中,根据勾股定理得:
A,B=,
=,
=,
方案①AC+AB=1+5=6.
方案②AM+MB=A,B=.
∵6<,
∴方案①路线短,比较合适.
(2)
过A点以AB为半径作圆交CD于E和F点,
图中由勾股定理求得EC=CF=2.所以QG=2-2或2+2.
过B点为圆心以AB为半径作圆,交CD于G、H.
由勾股定理可求得:GD=DH=3,所以QG=1或5.
做AB的垂直平分线交CD于Q,
求得:QG=.
综上, QG=时,△ABQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.
(1)有月租的收费方式是________(填“①”或“②”),月租费是________元;
(2)分别求出①,②两种收费方式中y与自变量x之间的函数表达式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,都为等腰直角三角形,三点在同一直线上,连接.
(1)若,求的周长;
(2)如图,点为的中点,连接并延长至,使得,连接.
①求证:;
②探索与的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S= m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为 m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB分别切⊙O于点A、B,M为劣弧AB上一点(不与A、B重合)过点M的切线分别与PA、PB相交于点C、D,Q为优弧AB上一点(不与A、B重合).
(1)若PA=10,求△PCD的周长;
(2)若∠P=40°,求∠AQB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①和的面积相等,②,③,④,⑤,其中一定正确的答案有______________.(只填写正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.
(1)求证:DI=DB;
(2)若AE=6cm,ED=4cm,求线段DI的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com