【题目】如图,等腰△ABC中,AB=AC=10,BC=16,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,线段BD的长为__________.
【答案】4或.
【解析】
分两种情况讨论:
①当∠AFC=90°时,AF⊥BC,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
②当∠CAF=90°时,过点A作AM⊥BC于点M,证明△AMC∽△FAC,列比例式求出FC,从而得BF,再利用垂直平分线的性质得BD.
①当∠AFC=90°时,AF⊥BC,
∵AB=AC,
∴BF=BC=8
∵DE垂直平分BF,
∴BD=BF=4;
②当∠CAF=90°时,过点A作AM⊥BC于点M,
∵AB=AC,
∴BM=CM,
在Rt△AMC与Rt△FAC中,∠AMC=∠FAC=90°,∠C=∠C,
∴△AMC∽△FAC,
∴,
∴FC=,
∵AC=10,MC=BC=8,
∴FC=,
∴BF=BC-FC=16-=,
∴BD=BF=.
故答案为:4或.
科目:初中数学 来源: 题型:
【题目】如图所示,中,,,.
点从点开始沿边向以的速度移动,点从点开始沿边向点以的速度移动.如果、分别从,同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若点沿射线方向从点出发以的速度移动,点沿射线方向从点出发以的速度移动,、同时出发,问几秒后,的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′.
(2)四边形 ABCA′的面积为_____;
(3)在直线l上找一点P,使PA+PB的长最短,则这个最短长度为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线y=x+4分别交x轴、y轴于点A、C,直线BC与直线AC关于y轴对称,动点D从点A出发,沿AC以每秒2个单位长度的速度向终点C运动,当点D出发后,过点D作DE∥BC交折线A﹣O﹣C于点E,以DE为边作等边△DEF,设△DEF与△ACO重叠部分图形的面积为S,点D运动的时间为t秒.
(1)写出坐标:点A( ),点B( ),点C( );
(2)当点E在线段AO上时,求S与t之间的函数关系式;
(3)求出以点B、E、F为顶点的三角形是直角三角形时t的值;
(4)直接写出点F运动的路程长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数 y=nx+2(n≠0)的图像与反比例函数 y (m≠0)在第一象限内的图像交于点 A,与 x 轴交于点 B,线段 OA=5,C 为 x 轴正半轴上一点,且 sin AOC .
(1)求一次函数和反比例函数的解析式;
(2)求△ AOB 的面积;
(3)请直接写出不等式 nx 2 的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在东西方向的海岸线MN上有A,B两艘船,船长都收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向36海里处,船P在船B顶点北偏西37°方向,若船A,船B分别以30海里/小时,20海里/小时的速度同时出发,匀速前往救援,通过计算判断哪艘船先到达船P处.(参考数据=1.73,sin37°=0.6,cos37°=0.80)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com