【题目】已知,抛物线的部分图象如图,则下列说法:①对称轴是直线;②当时,;③;④方程无实数根,其中正确的有________.
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC中,AB=AC=10,BC=16,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,线段BD的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,完成(1)-(3)题
数学课上,老师出示了这样一道题:如图, 中,,点P为边AB上一点(不与A、B重合),过P作于Q,做QE∥AB交BC于点E,连接PE,将线段PE绕点P顺时针旋转90°到PF,连接QF,探究线段之间的数量关系并证明.
同学们经过思考后,交流了自已的想法
小明:“通过观察和度量,发现为直角.”
小伟:“我通过一线三直角的模型构造三角形全等可以解决问题.”
小强:“我构造等腰直角三角形,再利用全等三角形可以解决问题.”
老师:“若其他条件不变,PE=AC,就可以求出的值.”
(1)多少度?四边形为什么特殊四边形?(直接写出答案)
(2)探究线段之间的数量关系并证明;
(3)若其他条件不变,PE=AC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.
(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.
(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.
(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于第一象限的点和第三象限的点,点的纵坐标为
求和的值;
求不等式:的解集
过轴上的点作平行于轴的直线,分别与直线和双曲线交于点、,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)请画出△ABC关于y轴对称的△DEF(其中D,E,F分别是A,B,C的对应点,不写画法);
(2)直接写出D,E,F三点的坐标:D( ),E( ),F( );
(3)在y轴上存在一点,使PC﹣PB最大,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角△ABC中,AC=8,△ABC的面积为20,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com