分析 画出L1到L2,L2到L3的距离,分别交L2,L3于E,F,通过证明△ABE≌△BCF,得出BF=AE,再由勾股定理即可得出结论.
解答 解:过点A作AE⊥l1,过点C作CF⊥l2,![]()
∴∠CBF+∠BCF=90°,
四边形ABCD是正方形,
∴AB=BC=CD=AD,
∴∠DAB=∠ABC=∠BCD=∠CDA=90°,
∴∠ABE+∠CBF=90°,
∵l1∥l2∥l3,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠AEB=∠BFC}\\{∠ABE=∠BCF}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF(AAS),
∴BF=AE,
∴BF2+CF2=BC2,
∴BC2=62+82=100.
即正方形ABCD的面积为100,
故答案为:100.
点评 本题主要考查了正方形的性质,全等三角形的判定与性质以及正方形面积的求解方法,能正确作出辅助线是解此题的关键,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{3}{2}$$\sqrt{2}$ | C. | $\frac{3}{2}$$\sqrt{3}$ | D. | $\frac{1+\sqrt{2}+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com