【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2);(3)抛物线向下平移或距离,其顶点落在OP上.
【解析】
试题分析:(1)根据特征线直接求出点D的特征线;
(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;
(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.
试题解析:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;
(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1.∵抛物线解析式为,∴,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴,将n=m+1带入得到m=2,n=3;
∴D(2,3),∴抛物线解析式为.
(3)如图,当点A′在平行于y轴的D点的特征线时:
根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离==.
如图,当点A′在平行于x轴的D点的特征线时:
∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴,∴c=,∴P(4,),∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点. ①试说明△OBC是等腰三角形;
②连接OA,试判断直线OA与线段BC的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;
②∠ADC=60°;
③点D在AB的中垂线上;
④BD=2CD.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是 .
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且=AEAD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为(m>0),平行四边形A1B1C1D1的面积为(m>0),试求∠A1E1B1+∠A1D1B1的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°.
(1)用直尺和圆规作出BC的垂直平分线(保留作图痕迹,不要求写作法);
(2)BC的垂直平分线与AC相交于D,连结BD,若∠C=30°,则∠ABD= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com