精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠A=90°.
(1)用直尺和圆规作出BC的垂直平分线(保留作图痕迹,不要求写作法);
(2)BC的垂直平分线与AC相交于D,连结BD,若∠C=30°,则∠ABD=

【答案】
(1)解:如图所示


(2)30°
【解析】解:(2)∵∠A=90°,∠C=30°, ∴∠ABC=60°,
∵DE是BC的垂直平分线,
∴BD=CD,
∴∠C=∠DBC=30°,
∴∠ABD=60°﹣30°=30°,
所以答案是:30°.
【考点精析】利用线段垂直平分线的性质对题目进行判断即可得到答案,需要熟知垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.

(1)从运动开始,当t取何值时,PQ∥CD?

(2)从运动开始,当t取何值时,△PQC为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.

(1)直接写出点D(m,n)所有的特征线;

(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;

(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的(  )
A.平均数
B.中位数
C.方差
D.众数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了 (为非负整数)的展开式的项数及各项系数的有关规律.

(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过 天是星期

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知任意三角形的三边长,如何求三角形面积?

古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明

例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:

∵a=3,b=4,c=5∴p==6∴S===6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;

(2)求△ABC的内切圆半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:这豆角能便宜吗?摊主:多买按八折,你要多少斤?小王报了数量后摊主同意按八折卖给小王,并说:之前一人只比你少买5斤就是按标价,还比你多花了3元呢!小王购买豆角的数量是(  )

A. 30 B. 25 C. 20 D. 15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,AB=8,周长等于24,则AD=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旋转不改变图形的

查看答案和解析>>

同步练习册答案