精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(  )
①AD是∠BAC的平分线;
②∠ADC=60°;
③点D在AB的中垂线上;
④BD=2CD.

A.4
B.3
C.2
D.1

【答案】A
【解析】解:①根据作图的过程可知,AD是∠BAC的平分线.
故①正确;
②如图,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=∠CAB=30°,
∴∠3=90°﹣∠2=60°,即∠ADC=60°.
故②正确;
③∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故③正确;
∵∠2=30°,
∴AD=2CD.
∵点D在AB的中垂线上,
∴AD=BD,
∴BD=2CD.
故④正确.
故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)如图1,△ABC和△E中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC.则AE和CD有什么数量和位置关系?
(2)类比: 若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE,CD之间的数量和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果收入15元记作+15元,那么支出20元记作元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为(
A.50°
B.60°
C.150°
D.50°或130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O的半径为5OP7,则点P在(  )

A.OB.OC.OD.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.

(1)直接写出点D(m,n)所有的特征线;

(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;

(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=40°,∠C=50°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(
A.40°
B.45°
C.50°
D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了 (为非负整数)的展开式的项数及各项系数的有关规律.

(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过 天是星期

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式3(x﹣1)≤5﹣x的非负整数解有(  )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案