【题目】某商场购进一批 30 瓦的 LED 灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED 灯泡 | 普通白炽灯泡 | |
进价(元) | 45 | 25 |
标价(元) | 60 | 30 |
(1)该商场购进了 LED 灯泡与普通白炽灯泡共 300 个,LED 灯泡按标价进行销售,而普通 白炽灯泡打九折销售,当销售完这批灯泡后可获利 3 200 元,求该商场购进 LED 灯泡与 普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡 120 个, 在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的 30%, 并求出此时这批灯泡的总利润为多少元?
【答案】(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】试题分析:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120﹣a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60﹣45)a+(30﹣25)(120﹣a)=10a+600,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
试题解析:解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,根据题意得:
,解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120﹣a)个,这批灯泡的总利润为W元,根据题意得:
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+600
∵10a+600≤[45a+25(120﹣a)]×30%,解得a≤75.∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.
科目:初中数学 来源: 题型:
【题目】请同学们完成下列甲,乙两种商品从包装到销售的一系列问题;
(1)某包装车间有22名工人,每人每小时可以包装120个甲商品或者200个乙商品,且1个甲商品需要搭配2个乙商品装箱,为使每天包装的甲商品和乙商品刚好配置,应安排包装甲商品和乙商品的工人各多少名?
(2)某社区超市第一次用6000元购进一批甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两种商品的进价和售价如下图所示:
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
①超市将这批货全部售出一共可以获利多少元?
②该超市第二次分别以第一次同样的进价购进第二批甲、乙两种商品,其中乙商品的件数是第一批乙商品件数的3倍,甲商品的件数不变,甲商品按照原售价销售,乙商品在原价的基础上打折销售,第二批商品全部售出后获得的总利润比第一批获得的总利润多720元,求第二批乙商品在原价基础上打几折销售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD是ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)求证:△ADE≌△CBF;
(2)连结CE,AF,求证:四边形AFCE为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知线段AB=20cm,CD=2cm,线段在线段上运动,分别是AC,BC的中点.
(1)若=4cm,则=______cm.
(2)当线段在线段上运动时,试判断的长度是否发生变化?如果不变请求出的长度,如果变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 请阅读下列材料,并解答相应的问题:
将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.
(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为 ;
(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;
(3)图3是一个三阶幻方,那么标有x的方格中所填的数是 ;
(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= ,y= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的 夹角叫做智慧角.
(1)在 Rt△ABC 中,∠ACB=90°,若∠A 为智慧角,则∠B 的度数为 ;
(2)如图①,在△ABC 中,∠A=45°,∠B=30°,求证:△ABC 是智慧三角形;
(3)如图②,△ABC 是智慧三角形,BC 为智慧边,∠B 为智慧角,A(3,0),点 B,C 在函数 y= (x>0)的图像上,点 C 在点 B 的上方,且点 B 的纵坐标为.当△ABC是直角三角形时,求 k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,回答下列问题:
数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;
在数轴上,有理数3与1对应的两点之间的距离为|31|=2;
在数轴上,有理数5与2对应的两点之间的距离为|5(2)|=7;
在数轴上,有理数2与3对应的两点之间的距离为|23|=5;
在数轴上,有理数8与5对应的两点之间的距离为|8(5)|=3;……
如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|ab|或|ba|,记为|AB|=|ab|=|ba|.
(1)数轴上有理数10与5对应的两点之间的距离等于___;数轴上有理数x与5对应的两点之间的距离用含x的式子表示为___;若数轴上有理数x与1对应的两点A,B之间的距离|AB|=2,则x等于___;
(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为2,动点P表示的数为x.
①若点P在点M,N之间,则|x+2|+|x4|=___;若|x+2|+|x4|═10,则x=___;
②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲地的海拔高度是米,乙地的海拔高度比甲地海拔高度的倍多米,丙地的海拔高度比甲地海拔高度的倍少米.
(1) 三地的海拔高度和一共是多少米?;
(2) 乙地的海拔高度比丙地的海拔高度高多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一所住宅的建筑平面图.
(1)用含有a、b的式子表示这所住宅的建筑面积.
(2)当a=5米,b=4米时,住宅的建筑面积有多大?
(3)在(2)的条件下,若此住宅的销售单价为每平方米5000元,求此住宅的销售价是多少元?(结果用科学记数法表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com