精英家教网 > 初中数学 > 题目详情

【题目】如图,∠1+∠2=180°,∠B=∠D.说明ABCD的理由.

补全下面的说理过程,并在括号内填上适当的理由

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代换)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代换)

ABCD   

【答案】对顶角相等 ∠1+∠AHB=180° 同旁内角互补,两直线平行 CFH 两直线平行,同位角相等 CFH 内错角相等,两直线平行

【解析】

根据已知条件和对顶角的性质得到∠1+AHB=180°根据平行线的判定得到DEBF根据平行线的性质得到∠D=CFH于是得到结论.

∵∠1+2=180°(已知),

2=AHB(对顶角相等),

∴∠1+AHB=180°(等量代换),

DEBF(同旁内角互补,两直线平行),

∴∠D=CFH(两直线平行,同位角相等),

∵∠CFH=B(等量代换),

ABCD(内错角相等,两直线平行).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,M、E、F三点在 上,N是矩形两对角线的交点.若 =24, =32, =16, =8, =7,则下列哪一条直线是A、C两点的对称轴?(  )
A.直线MN
B.直线EN
C.直线FN
D.直线DN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)( 2﹣(﹣1)2016 +(π﹣1)0
(2)化简: ÷(1﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2018的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC

(1)如图.当COD在∠AOB的内部时

AOC=39°40′,求DOE的度数;

AOC=α,求DOE的度数(用含α的代数式表示),

(2)如图,当COD在AOB的外部时,

请直接写出AOC与DOE的度数之间的关系;

AOC内部有一条射线OF,满足∠AOC+2∠BOE=4∠AOF,写出AOF与DOE的度数之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为、宽为的全等小矩形,且> .(以上长度单位:cm)

(1)观察图形,可以发现代数式可以因式分解为

(2)若每块小矩形的面积为10,四个正方形的面积和为58,试求图中所有裁剪线(虚线部分)长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若MAB与NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且ACB=60°时,有以下两个结论:

①∠APB=120°AF+BE=AB.

那么,当AMBN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;

(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF= ,则小正方形的周长为(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案