一个不透明的盒中装有若干个只有颜色不同的红球与白球.
(1)若盒中有2个红球和2个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;
(2)若先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,一共做了50次,统计结果如下表:
球的颜色 | 无记号 | 有记号 | ||
红色 | 白色 | 红色 | 白色 | |
摸到的次数 | 18 | 28 | 2 | 2 |
由上述的摸球实验的结果可估算盒中红球、白球各占总球数的百分之几?
(3)在(2)的条件下估算盒中红球的个数.
【考点】列表法与树状图法;利用频率估计概率.
【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从中任意摸出两个球恰好是一红一白的情况,再利用概率公式即可求得答案;
(2)根据题意得50次摸球实验活动中,出现红球20次,白球30次,继而求得答案;
(3)由题意可知,50次摸球实验活动中,出现有记号的球4次,则可求得总数,继而求得答案.
【解答】解:(1)画树状图得:
∵共有12种等可能的结果,从中任意摸出两个球恰好是一红一白的有8种情况,
∴P(恰好是一红一白)==;
(2)由题意可知,50次摸球实验活动中,出现红球20次,白球30次,
∴红球所占百分比为20÷50=40%,
白球所占百分比为30÷50=60%,
答:红球占40%,白球占60%;
(3)由题意可知,50次摸球实验活动中,出现有记号的球4次,
∴总球数为8÷=100,
∴红球数为100×40%=40,
答:盒中红球有40个.
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于
点E,交DC的延长线于点F,BG⊥AE于G,BG=,则梯形AECD的
周长( )
A.22 B.23 C.24 D.25
查看答案和解析>>
科目:初中数学 来源: 题型:
某校在开展以 “我的中国梦”为主题的演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA的延长线的垂线EF,垂足为F.
(1)找出图中与EF相等的线段,并证明你的结论;
(2)求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.
大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.
小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)
(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;
(2)小双设计的游戏方案对双方是否公平?不必说理.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com