精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程ax2+2x+1=0有两个实数根,
(1)求实数a的取值范围.
(2)若有两个相等的实数根,求a的值,并求此时方程的解.
分析:(1)根据根的判别式的意义得△=22-4a=4(1-a)≥0,再结合一元二次方程的定义得出a≠0,然后解不等式即可;
(2)据根的判别式的意义得△=22-4a=4(1-a)=0,且a≠0,然后解方程即可.
解答:解:(1)∵原方程有两个实数根,
∴△≥0,且a≠0,
即4-4a≥0,且a≠0,
∴a≤1且a≠0,
故当a≤1且a≠0时,原方程有两个实数根;

(2)若方程有两个相等的实数根,
则△=0,且a≠0,
∴4-4a=0,且a≠0,
a=1,
原方程为x2+2x+1=0,
整理得:(x+1)2=0,
∴x1=x2=-1.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根,同时考查了一元二次方程的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案