【题目】已知正比例函数和反比例函数的图象都经过点 A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线 OA 向下平移后得到直线 l,与反比例函数的图象交于点 B(6,m),求 m 的值和直线 l 的解 析式;
(3)在(2)中的直线 l 与 x 轴、y 轴分别交于 C、D,求四边形 OABC 的面积.
【答案】(1)正比例函数的解析式为y=x,反比例函数的解析式为y=; (2)直线l的解析式为y=x; (3)S四边形OABC=.
【解析】
(1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;
(2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;
(3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.
(1)设正比例函数的解析式为y=ax,反比例函数的解析式为y=,
∵正比例函数和反比例函数的图象都经过点A(3,3),
∴3=3a,3=,
∴a=1,b=9,
∴正比例函数的解析式为y=x,反比例函数的解析式为y=;
(2)∵点B在反比例函数上,
∴m==,
∴B点的坐标为(6,),
∵直线BD是直线OA平移后所得的直线,
∴可设直线BD的解析式为y=x+c,
∴=6+c,
∴c=,
∴直线l的解析式为y=x;
(3)过点A作AE∥x轴,交直线l于点E,连接AC.
∵直线l的解析式为y=x,A(3,3),
∴点E的坐标为(,3),点C的坐标为(,0).
∴AE=3=,OC=,
∴S四边形OABC=S△OAC+S△ACES△ABE=××3+××3××=.
科目:初中数学 来源: 题型:
【题目】已知⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且∥BC.
(1) 连接PO,并延长交⊙O于点D,连接AD.证明: AD平分∠BAC;
(2) 在(1)的条件下,AD交BC于点E,连接CD.若DE=2,AE=6.试求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出 20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价 180元增加 x元,则有( )
A. (x﹣20)(50﹣)=10890 B. x(50﹣)﹣50×20=10890
C. (180+x﹣20)(50﹣)=10890 D. (x+180)(50﹣)﹣50×20=10890
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;
(2)销售单价为多少元时,该商品每天的销售利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D:CD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.
(1)求k的值;
(2)用含m的代数式表示CD的长;
(3)求S与m之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校每学期末都要对优秀学生进行表扬,每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得.现在学校有24个班级,平均每班50人.
(1)作为一名学生,你恰好能得到荣誉的机会有多大?
(2)作为一名学生,你恰好能当选三好生或模范生的机会有多大?
(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?
(4)你可以用什么方法对(1)(2)问的结果进行模拟实验?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点从的顶点出发,沿匀速运动,到点停止运动.点运动时,线段的长度与运动时间的函数关系如图2所示,其中为曲线部分的最低点,则的面积是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com