精英家教网 > 初中数学 > 题目详情

【题目】猜想:当点E在两条直线ABCD之外时(如图12),BEDBD满足怎样的关系时,有ABCD?对猜想进行证明.

【答案】1)当∠B=BED+D时,有ABCD.证明见解析;(2)当∠B=BED+D时,有ABCD.证明见解析.

【解析】

1)过点EEFAB,由∠B=BED+D,结合题意,得到ABCD

2)设BECD交于点O.结合题意推得∠BOD=B,从而得到ABCD

1)当∠B=BED+D时,有ABCD.证明如下:

如图1,过点EEFAB,则∠B+FEB=180°

∵∠B=BED+D

∴∠FEB+BED+D=180°

EFCD

ABCD

2)当∠B=BED+D时,有ABCD.证明如下:

如图2,设BECD交于点O

∵∠BOD=BED+D,∠B=BED+D

∴∠BOD=B

ABCD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1)四边形ABCD中,已知∠ABC+ADC180°,ABADDAAB,点ECD的延长线上,∠BAC=∠DAE

1)求证:△ABC≌△ADE

2)求证:CA平分∠BCD

3)如图(2),设AF是△ABCBC边上的高,求证:EC2AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知,满足点在轴的负半轴上,直角顶点轴上,点轴上方.

如图1所示,若点与原点重合,点的坐标是,则点的坐标是

如图2所示,若点的坐标是,过点轴于,请求出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF是四边形ABCD对角线AC上的两点,ADBCDFBEAE=CF

求证:(1AFD≌△CEB

2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图示的对话解答下列问题.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB<AD,对角线ACBD相交于点O,动点P由点A出发,沿AB-BC→CD向点D运动设点P的运动路程为xAOP的面积为yyx的函数关系图象如图②所小示,则AD的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四个结论:
①二次函数y=ax2+bx+c 有最小值,最小值为-3;
②抛物线与y轴交点为(0,-3);
③二次函数y=ax2+bx+c 的图像对称轴是x=1;
④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正确结论的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )

A. 31 B. 46 C. 51 D. 66

查看答案和解析>>

同步练习册答案