精英家教网 > 初中数学 > 题目详情

【题目】巳知二次函数y=a(x2﹣6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.

【答案】
(1)

解:令y=0,由a(x2﹣6x+8)=0,

解得x1=2,x2=4;

令x=0,解得y=8a,

∴点 A、B、C的坐标分别是(2,0)、(4,0)、(0,8a),

该抛物线对称轴为直线x=3,

∴OA=2,

如图①,设抛物线对称轴与x轴的交点为M,则AM=1,

由题意得:O′A=OA=2,

∴O′A=2AM,

∴∠O′AM=60°,

∴∠OAC=∠O′AC=60°,

∴OC=2 ,即8a=2

∴a=


(2)

解:若点P是边EF或边FG上的任意一点,结论同样成立,

①如图②,设P是边EF上的任意一点,连接PM,

∵点E(4,4)、F(4,3)与点B(4,0)在一直线上,点C在y轴上,

∴PB<4,PC≥4,

∴PC>PB,

又∵PD>PM>PB,PA>PM>PB,

∴PB≠PA,PB≠PC,PB≠PD,

∴此时线段PA、PB、PC、PD不能构成平行四边形,

②设P是边FG上的任意一点(不与点G重合),

∵点F的坐标是(4,3),点G的坐标是(5,3),

∴FB=3,GB=

∴3≤PB

∵PC≥4,

∴PC>PB,

又∵PD>PM>PB,PA>PM>PB,

∴PB≠PA,PB≠PC,PB≠PD,

∴此时线段PA、PB、PC、PD也不能构成平行四边形


(3)

解:存在一个正数a,使得线段PA、PB、PC、PD能构成一个平行四边形,

如图③,∵点A、B是抛物线与x轴交点,点P在抛物线对称轴上,

∴PA=PB,

∴当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形,

∵点C的坐标是(0,8a),点D的坐标是(3,﹣a),

点P的坐标是(3,t),

∴PC2=32+(t﹣8a)2,PD2=(t+a)2

由PC=PD得PC2=PD2

∴32+(t﹣8a)2=(t+a)2

整理得:7a2﹣2ta+1=0有两个不相等的实数根,

∴a= =

∴a= 或a=

∵t>3,

∴显然a= 或a= ,满足题意,

∴当t是一个大于3的常数时,存在两个正数a= 或a= ,使得线段PA、PB、PC、PD能构成一个平行四边形.


【解析】(1)本题需先求出抛物线与x轴交点坐标和对称轴,再根据∠OAC=60°得出OC,从而求出a.(2)本题需先分两种情况进行讨论,当P是EF上任意一点时,可得PC>PB,从而得出PB≠PA,PB≠PC,PB≠PD,即可求出线段PA、PB、PC、PD不能构成平行四边形.(3)本题需先得出PA=PB,再由PC=PD,列出关于t与a的方程,从而得出a的值,即可求出答案.
【考点精析】根据题目的已知条件,利用二次函数的图象和二次函数的性质的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,ABC的顶点都在网格点上,其中,C点坐标为(1,2)

(1)写出点A、B的坐标:

A(      )、B(      

(2)判断ABC的形状   .计算ABC的面积是   

(3)将ABC先向左平移2个单位长度,再向上平移1个单位长度,得到A′B′C′,A′B′C′的三个顶点坐标分别是A′(      ),B′(      ),C′(      

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个结论中,正确的是(
A.方程x+ =﹣2有两个不相等的实数根
B.方程x+ =1有两个不相等的实数根
C.方程x+ =2有两个不相等的实数根
D.方程x+ =a(其中a为常数,且|a|>2)有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2)五个点,抛物线y=a(x﹣1)2+k(a>0)经过其中的三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;
(2)点A在抛物线y=a(x﹣1)2+k(a>0)上吗?为什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是( )

A.2
B.2+
C.2
D.2+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.
(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?
(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。假设所进车辆全部售完,为了使利润最大,该商城应如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2 , 矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn , OEFG围成,其中A1、G、B1 上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2 , C1D1⊥EF于H1 , FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn
(1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?

查看答案和解析>>

同步练习册答案