精英家教网 > 初中数学 > 题目详情

【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2 , 矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn , OEFG围成,其中A1、G、B1 上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2 , C1D1⊥EF于H1 , FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn
(1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?

【答案】
(1)解:在Rt△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2

∴EH2= r,FH2=r﹣ r,

∴d= (r﹣ r)= r


(2)解:假设CnDn与点E间的距离能等于d,由题意 r= r,

这个方程n没有整数解,

所以假设不成立.

r=2+2 ≈4.8,

∴直角三角形△C2ED2最多分成5份,

∴n=6,此时CnDn与点E间的距离= r﹣4× r= r


【解析】(1)根据d= FH2 , 求出EH2即可解决问题.(2)假设CnDn与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由 r=2+2 ≈4.8,求出n即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】巳知二次函数y=a(x2﹣6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,AB=6 ,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.

(1)求证:BE=DF;
(2)当t=秒时,DF的长度有最小值,最小值等于
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠AOB是直角,∠AOC=40°ON∠AOC的平分线,OM∠BOC的平分线.

1)求∠MON的大小.

2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC
(1)线段BC的长等于
(2)请在图中按下列要求逐一操作,并回答问题: 以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于
(3)连OD,在OD上画出点P,使OP的长等于 ,请写出画法,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图. 最喜爱的传统文化项目类型频数分布表

项目类型

频数

频率

书法类

18

a

围棋类

14

0.28

喜剧类

8

0.16

国画类

b

0.20

根据以上信息完成下列问题:

(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于( )

A.8( )m
B.8( )m
C.16( )m
D.16( )m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同
(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;
(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=36°,

(1)作出AB边的垂直平分线DE,交AC于点D,交AB于点E,连接BD;

(2)下列结论正确的是:

① BD平分∠ABC;② AD=BD=BC;③ △BDC的周长等于AB+BC; ④ D点是AC中点;

查看答案和解析>>

同步练习册答案